Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun 21;31(25):3051-9.
doi: 10.1038/onc.2011.484. Epub 2011 Oct 24.

Smad3 regulates E-cadherin via miRNA-200 pathway

Affiliations

Smad3 regulates E-cadherin via miRNA-200 pathway

S-M Ahn et al. Oncogene. .

Abstract

To identify potential microRNA (miRNA) links between Smad3, a mediator of TGF-β (transforming growth factor-β) signaling, and E-cadherin, we characterized the miRNA profiles of two gastric cancer cell lines: SNU484-LPCX, which does not express Smad3, and SNU484-Smad3, in which Smad3 is overexpressed. We found that among differentially expressed miRNAs, miR-200 family members are overexpressed in SNU484-Smad3 cells. Subsequent studies, including analysis of the effects of silencing Smad3 in SNU484-Smad3 cells and a luciferase reporter assay, revealed that Smad3 directly binds to a Smad-binding element located in the promoter region of miR-200b/a, where it functions as a transcriptional activator. TGF-β did not affect the regulatory role of Smad3 in transcription of miR-200 and expression of epithelial-mesenchymal transition markers. We conclude that Smad3 regulates, at the transcriptional level, miR-200 family members, which themselves regulate ZEB1 and ZEB2, known transcriptional repressors of E-cadherin, at the posttranscriptional level in a TGF-β-independent manner. This represents a novel link between Smad3 and posttranscriptional regulation by miRNAs in epithelial-mesenchymal transition in gastric cancer cells.

PubMed Disclaimer

Publication types

MeSH terms