Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;145(1):5-17.
doi: 10.1111/j.1399-3054.2011.01536.x. Epub 2011 Dec 7.

N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification

Affiliations
Review

N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification

Pitter F Huesgen et al. Physiol Plant. 2012 May.

Abstract

Proteolysis is an irreversible post-translational modification that regulates many intra- and intercellular processes, including essential go/no-go decisions during cell proliferation, development and cell death. Hundreds of protease-coding genes have been identified in plants, but few have been linked to specific substrates. Conversely, proteolytic processes are frequently observed in plant biology but rarely have they been ascribed to specific proteases. In mammalian systems, unbiased system-wide proteomics analyses of protease activities have recently been tremendously successful in the identification of protease substrate repertoires, also known as substrate degradomes. Knowledge of the substrate degradome is key to understand the role of proteases in vivo. Quantitative shotgun proteomic studies have been successful in identifying protease substrates, but while simple to perform they are biased toward abundant proteins and do not reveal precise cleavage sites. Current degradomics techniques overcome these limitations by focusing on the information-rich amino- and carboxy-terminal peptides of the original mature proteins and the protease-generated neo-termini. Targeted quantitative analysis of protein termini identifies precise cleavage sites in protease substrates with exquisite sensitivity and dynamic range in in vitro and in vivo systems. This review provides an overview of state-of-the-art methods for enrichment of protein terminal peptides, and their application to protease research. These emerging degradomics techniques promise to clarify the elusive biological roles of proteases and proteolysis in plants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources