Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jun 10;254(11):4764-71.

Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals

  • PMID: 220260
Free article

Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals

B Chance et al. J Biol Chem. .
Free article

Abstract

The recording of oxidation-reduction-related fluorescence signals of oxidized flavoprotein (Fp) and reduced pyridine nucleotide (PN) from isolated mitochondria at temperatures below -80 degrees C can be accompanished with a high degree of accuracy and a wide dynamic range. The specific low temperature enhancement of the fluorescence signals due to increased quantum yield and to multiple scattering affords increased accuracy and less interference due to screening pigments such as hemoglobin and myoglobin. Since the metabolic processes are arrested and the recording speed can be greatly diminished, the technique can operate with a much smaller concentration of mitochondria than is needed at room temperature, and the method is suitable for localized oxidation-reduction measurements. The Fp and PN signals originate from the mitochondrial matrix space in which they represent the major fluorochromes. Since Fp and PN are near oxidation-reduction equilibrium, the ratio of the two fluorescence intensities, suitably normalized, approximates the oxidation-reduction ratio of oxidized flavoprotein/reduced pyridine nucleotide. Thus, this technique affords a foundation for the resolution of oxidation-reduction states in two and three dimensions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources