Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;6(10):e25701.
doi: 10.1371/journal.pone.0025701. Epub 2011 Oct 18.

Robust reproducible resting state networks in the awake rodent brain

Affiliations

Robust reproducible resting state networks in the awake rodent brain

Lino Becerra et al. PLoS One. 2011.

Abstract

Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new therapies. RSN reported studies in rodents, however, are few, and most studies are performed with anesthetized rodents that might alter networks and differ from their non-anesthetized state. Acquiring RSN data in the awake rodent avoids the issues of anesthesia effects on brain function. Using high field fMRI we determined RSNs in awake rats using an independent component analysis (ICA) approach, however, ICA analysis can produce a large number of components, some with biological relevance (networks). We further have applied a novel method to determine networks that are robust and reproducible among all the components found with ICA. This analysis indicates that 7 networks are robust and reproducible in the rat and their putative role is discussed.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Awake Rat Motion Assessment.
The motion parameters for 2 typical rats (Left column) in the study and the 2 rejected rats (Right column) are displayed. Green Line, translation/rotation X-axis, Blue Y-axis, and Red Z-axis.
Figure 2
Figure 2. Reproducibility Analysis with RAICAR_N.
The top panel displays components sorted according to reproducibility level. The red line marks the 90% cutoff as determined in the top panel. With a 90% cutoff, 7 components are above the threshold; with a 95% cutoff 6 components survive. The bottom panel depicts the normalized reproducibility and the adjusted cut-off for 90%.
Figure 3
Figure 3. Resting State Networks in Awake Rats.
Components (C1–C7) are ordered according to their reproducibility degree. Component 1 has significant cerebellar structures; Component 2 includes medial and lateral cortical structures resembling the human default mode network; Component 3 includes a basal-ganglia-hypothalamus network; Component 4 encompasses basal-ganglia-thalamus-hippocampus circuitry; Component 5 represents an autonomic pathway; Component 6 represents the sensory network; and Component 7 groups interoceptive structures to form a network. All components have been thresholded according to a mixture model approach-see Methods for details. The atlas is based on the Paxinos Atlas (Paxinos and Watson [33]). Key: Ins: Insula, AcB: Nucleus Accumbens, Motor: Motor Cortex, Amyg: Amygdala, Parab: Parabrachial, CPu: Caudate-Putamen, PAG: Periaqueductal Gray, Cereb: Cerebellum, ParA: Parietal Association Cortex, Cnf: Cuneiform nucleus, Som: Somatosensory Cortex, Ent: Entorhinal Cortex, SupColl: Superior Colliculus, FC: Frontal Cortex, Thal: Thalamus, TpA: Temporal Association Cortex, Hypo: Hypothalamus, cing: Cingulate cortex (anterior and retrosplenial), InfColl: Inferior Colliculus.

References

    1. Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18:1856–1864. - PubMed
    1. Auer DP. Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging. 2008;26:1055–1064. - PubMed
    1. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20:519–534. - PubMed
    1. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–682. - PMC - PubMed
    1. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541. - PubMed

Publication types