Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;93(1):30-8.
doi: 10.1016/j.antiviral.2011.10.012. Epub 2011 Oct 19.

Identification of a novel resistance mutation for benzimidazole inhibitors of the HCV RNA-dependent RNA polymerase

Affiliations
Free article

Identification of a novel resistance mutation for benzimidazole inhibitors of the HCV RNA-dependent RNA polymerase

Leen Delang et al. Antiviral Res. 2012 Jan.
Free article

Abstract

Non-nucleoside inhibitors of the RNA-dependent RNA polymerase of the hepatitis C virus that are based on a benzimidazole or indole scaffold have been reported to interact with thumb domain 1 of the enzyme. Escape mutants that confer in vitro resistance to these inhibitors map to amino acids P495, P496 or V499. We here report a novel resistance mutation (T389S/A) that was identified following resistance selection with the benzimidazole non-nucleoside polymerase inhibitor JT-16 in HCV Con-1 subgenomic replicon (genotype 1b). This JT-16 resistant replicon retained wild-type susceptibility to protease inhibitors and nucleoside polymerase inhibitors. Replicons that carry mutations T389A and T389S have moderate levels of resistance to JT-16 (7- and 13-fold, respectively). Mutation P495A is associated with high-level (44-fold) resistance. Surprisingly, this previously reported 'key' mutation for benzimidazole resistance, P495A, was detected in only 15% of the resistant population. Furthermore, the replication fitness of the T389S mutant was significantly higher than that of the P495A mutant. By means of molecular modeling a structural hypothesis was formulated to explain the emergence of the T389S/A mutation in the JT-16 resistant replicon. Our data demonstrate that low-level resistant, but fit, variants can develop during in vitro resistance selection with the benzimidazole inhibitor JT-16. Moreover, different substitutions to the benzimidazole scaffold can affect the (pattern of) resistance mutations that emerge during resistance selection.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources