Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest
- PMID: 22034199
- PMCID: PMC3277807
- DOI: 10.1002/jor.21574
Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest
Abstract
The extent to which bone tissue composition varies across anatomic sites in normal or pathologic tissue is largely unknown, although pathologic changes in bone tissue composition are typically assumed to occur throughout the skeleton. Our objective was to compare the composition of normal cortical and trabecular bone tissue across multiple anatomic sites. The composition of cadaveric bone tissue from three anatomic sites was analyzed using Fourier transform infrared imaging: iliac crest (IC), greater trochanter (GT), and subtrochanteric femur (ST). The mean mineral:matrix ratio was 20% greater in the subtrochanteric cortex than in the cortices of the iliac crest (p = 0.004) and the greater trochanter (p = 0.02). There were also trends toward 30% narrower crystallinity distributions in the subtrochanteric cortex than in the greater trochanter (p = 0.10) and 30% wider crystallinity distributions in the subtrochanteric trabeculae than in the greater trochanter (p = 0.054) and the iliac crest (p = 0.11). Thus, the average cortical tissue mineral content and the widths of the distributions of cortical crystal size/perfection differ at the subtrochanteric femur relative to the greater trochanter and the iliac crest. In particular, the cortex of the iliac crest has lower mineral content relative to that of the subtrochanteric femur and may have limited utility as a surrogate for subtrochanteric bone.
Copyright © 2011 Orthopaedic Research Society.
Figures
References
-
- Abrahamsen B, Eiken P, Eastell R. Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: a register-based national cohort study. J Bone Miner Res. 2009;24:1095–1102. - PubMed
-
- Aerssens J, Boonen S, Joly J, Dequeker J. Variations in trabecular bone composition with anatomical site and age: potential implications for bone quality assessment. J Endocrinol. 1997;155:411–421. - PubMed
-
- Boskey A, Mendelsohn R. Infrared analysis of bone in health and disease. J Biomed Opt. 2005;10:031102. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
