Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;10(1):3-8.
doi: 10.4103/1450-1147.82108.

Optimization of Ordered Subset Expectation Maximization Reconstruction for Reducing Urinary Bladder Artifacts in Single-photon Emission Computed Tomography Imaging

Affiliations

Optimization of Ordered Subset Expectation Maximization Reconstruction for Reducing Urinary Bladder Artifacts in Single-photon Emission Computed Tomography Imaging

A M Katua et al. World J Nucl Med. 2011 Jan.

Abstract

Bladder artifact during bone single-photon emission computed tomography (SPECT) is a common source of error. The extent and severity of bladder artifacts have been described for filtered back projection (FBP) reconstruction. Ordered subset expectation maximization (OSEM) may help to address this problem of bladder artifacts, which render up to 20% of the SPECT images unreadable. The objective of this study was to evaluate the relationship of the bladder to acetabulum ratio in guiding the choice of the number of iterations and subsets used for OSEM reconstruction, for reducing bladder artifacts found on FBP reconstruction. One hundred five patients with various indications for bone scans were selected and planar and SPECT images were acquired. The SPECT images were reconstructed with both FBP and OSEM using four different combinations of iterations and subsets. The images were given to three experienced nuclear physicians who were blinded to the diagnosis and type of reconstruction used. They then labeled images from the best to the worst after which the data were analyzed. The bladder to acetabulum ratio for each image was determined which was then correlated with the different iterations and subsets used. The study demonstrated that reconstruction using OSEM led to better lesion detectability compared to FBP in 87.62% of cases. It further demonstrated that the iterations and subsets used for reconstruction of an image correlate with the bladder to acetabulum ratio. Four iterations and 8 subsets yielded the best results in 48.5% of the images, whilst 2 iterations and 8 subsets yielded the best results in 33.8%. The number of reconstructed images which yielded the best results with 2 iterations and 8 subsets was the same as or more than those with 4 iterations and 8 subsets when the bladder/acetabulum ratio (A/B) was between 0.2 and 0.39. A ratio below 0.2 or above 0.39 supports the usage of 4 iterations and 8 subsets over 2 iterations and 8 subsets. We conclude that bladder to acetabulum ratio can be used to select the optimum number of iterations and subsets for reconstruction of bone SPECT for accurate characterization of lesions. This study also confirms that reconstruction with OSEM (vs. FBP) leads to better lesion detectability and characterization.

Keywords: Bladder artifact; bone single-photon emission computed tomography; ordered subset expectation maximization.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
Representative images of pelvic SPECT obtained using FBP reconstruction method (a) and OSEM methods (b, c and d). Images (b), (c) and (d) were obtained using 2 × 8, 4 × 8 and 3 × 12 iterations × subsets, respectively. The results clearly demonstrate better quality images with OSEM reconstruction
Figure 2
Figure 2
Relationship between iterations and subsets used for reconstruction versus Acetabulum/Bladder (A/B) ratio

References

    1. Collier BD, Carrera GF, Johnson RP, Isitman AT, Hellman RS, Knobel J, et al. Detection of femoral head avascular necrosis in adults by SPECT. J Nucl Med. 1985;26:979–87. - PubMed
    1. Blocklet D, Seret A, Popa N, Schoutens A. Maximum likelihood reconstruction with ordered subsets in bone SPECT. J Nucl Med. 1999;40:1978–84. - PubMed
    1. Case JA, Licho K, King MA, Weaver JP. Bone SPECT of the spine: A comparison of attenuation correction techniques. J Nucl Med. 1999;40:604–13. - PubMed
    1. Kauppinen T, Koskinen MO, Alenius S, Vanninen E, Kuikka JT. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non - uniform attenuation correction. Eur J Nucl Med. 2000;27:1380–6. - PubMed
    1. Vanhove C, Defrise M, Frankers PR, Evernert H, Deconinck F, Bossyut A. Interest of the ordered subsets expectation maximization (OSEM) algorithm in pinhole single-photon emission tomography reconstruction: A phantom study. Eur J Nucl Med. 2000;27:140–6. - PubMed