Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 28:6:106.
doi: 10.1186/1746-1596-6-106.

Nosocomial outbreak of imipenem-resistant Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamase in a kidney transplantation unit

Affiliations

Nosocomial outbreak of imipenem-resistant Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamase in a kidney transplantation unit

S Hammami et al. Diagn Pathol. .

Abstract

Background: Twenty four non replicate imipenem resistant P. aeruginosa were isolated between January and November 2008, in the kidney transplantation unit of Charles Nicolle Hospital of Tunis (Tunisia). This study was conducted in order to establish epidemiological relationship among them and to identify the enzymatic mechanism involved in imipenem resistance.

Methods: Analysis included antimicrobial susceptibility profile, phenotypic (imipenem-EDTA synergy test) and genotypic detection of metallo-β-lactamase (MBL) (PCR), O-serotyping and pulsed-field gel electrophoresis.

Results: All strains showed a high level of resistance to all antimicrobials tested except to colistin. The presence of MBL showed concordance between phenotypic and genotypic methods. Sixteen isolates were identified as VIM-2 MBL-producers and 13 of them were serotype O4 and belonged to a single pulsotype (A).

Conclusions: This study describes an outbreak of VIM-2-producing P. aeruginosa in a kidney transplantation unit. Clinical spread of blaVIM-2 gene is a matter of great concern for carbapenem resistance in Tunisia.

PubMed Disclaimer

References

    1. Kohlenberg A, Weitzel-Kage D, van der Linden P, Sohr D, Vogeler S, Kola A, Halle E, Ruden H, Weist K. Outbreak of carbapenem-resistant Pseudomonas aeruginosa infection in a surgical intensive care unit. J Hosp Infect. 2010;74:350–357. doi: 10.1016/j.jhin.2009.10.024. - DOI - PubMed
    1. Cornaglia G, Mazzariol A, Lauretti L, Rossolini GM, Fontana R. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-β-lactamase. Clin Infect Dis. 2000;31:1119–1125. doi: 10.1086/317448. - DOI - PubMed
    1. Tsakris A, Pournaras S, Woodford N, Palepou MF, Babini GS, Douboyas J, Livermore DM. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol. 2000;38:1290–1292. - PMC - PubMed
    1. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50:43–48. doi: 10.1128/AAC.50.1.43-48.2006. - DOI - PMC - PubMed
    1. Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect. 2005;11(Suppl 4):17–32. - PubMed

Publication types

MeSH terms