Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec 15;17(24):7645-53.
doi: 10.1158/1078-0432.CCR-11-1357. Epub 2011 Oct 31.

2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer

Affiliations

2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer

Ying Chen et al. Clin Cancer Res. .

Abstract

Purpose: We have synthesized and evaluated in vivo 2-(3-{1-carboxy-5-[(6-[(18)F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [(18)F]DCFPyL, as a potential imaging agent for the prostate-specific membrane antigen (PSMA). PSMA is upregulated in prostate cancer epithelia and in the neovasculature of most solid tumors.

Experimental design: [(18)F]DCFPyL was synthesized in two steps from the p-methoxybenzyl (PMB) protected lys-C(O)-glu urea precursor using 6-[(18)F]fluoronicotinic acid tetrafluorophenyl ester ([(18)F]F-Py-TFP) for introduction of (18)F. Radiochemical synthesis was followed by biodistribution and imaging with PET in immunocompromised mice using isogenic PSMA PC3 PIP and PSMA- PC3 flu xenograft models. Human radiation dosimetry estimates were calculated using OLINDA/EXM 1.0.

Results: DCFPyL displays a K(i) value of 1.1 ± 0.1 nmol/L for PSMA. [(18)F]DCFPyL was produced in radiochemical yields of 36%-53% (decay corrected) and specific radioactivities of 340-480 Ci/mmol (12.6-17.8 GBq/μmol, n = 3). In an immunocompromised mouse model [(18)F]DCFPyL clearly delineated PSMA+ PC3 PIP prostate tumor xenografts on imaging with PET. At 2 hours postinjection, 39.4 ± 5.4 percent injected dose per gram of tissue (%ID/g) was evident within the PSMA+ PC3 PIP tumor, with a ratio of 358:1 of uptake within PSMA+ PC3 PIP to PSMA- PC3 flu tumor placed in the opposite flank. At or after 1 hour postinjection, minimal nontarget tissue uptake of [(18)F]DCFPyL was observed. The bladder wall is the dose-limiting organ.

Conclusions: These data suggest [(18)F]DCFPyL as a viable, new positron-emitting imaging agent for PSMA-expressing tissues.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Synthesis of [18F]DCFPyL [18F]3 and DCFPyL 3. a) 6-Fluoro-nicotinic acid-2,3,5,6-tetrafluoro-phenyl ester, Et3N, CH2Cl2; b) TFA/CH2Cl2; c) 6-[18F]fluoro-nicotinic acid-2,3,5,6-tetrafluoro-phenyl ester; d) TFA/anisole.
Figure 2
Figure 2
PET-CT volume-rendered composite images representing the time course of radiochemical uptake after administration of [18F]DCFPyL ([18F]3). PSMA+ PC3 PIP (arrow) and PSMA− PC3 flu (dotted oval) tumors are present in subcutaneous tissues posterior to opposite forearms, as indicated. The mouse was injected intravenously with 0.38 mCi (14.1 MBq) [18F]DCFPyL ([18F]3) at Time 0. By 30 min post-injection radiochemical uptake was evident within the PIP tumor and kidneys. Radioactivity receded from kidneys faster than from tumor, and was not evident within kidneys by 3.5 h post-injection. Radioactivity within bladder was due to excretion. At no time was radiochemical clearly visualized within the flu tumor. kid = kidneys, bl = urinary bladder.

References

    1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians. 2010;60:277–300. - PubMed
    1. Ross JS, Sheehan CE, Fisher HA, Kaufman RP, Jr., Kaur P, Gray K, et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 2003;9:6357–62. - PubMed
    1. Perner S, Hofer MD, Kim R, Shah RB, Li H, Moller P, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Human pathology. 2007;38:696–701. - PubMed
    1. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer research. 1987;7:927–35. - PubMed
    1. Smith-Jones PM, Vallabhajosula S, Navarro V, Bastidas D, Goldsmith SJ, Bander NH. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med. 2003;44:610–7. - PubMed

Publication types

MeSH terms

Substances