The simian immunodeficiency virus targets central cell cycle functions through transcriptional repression in vivo
- PMID: 22043290
- PMCID: PMC3197176
- DOI: 10.1371/journal.pone.0025684
The simian immunodeficiency virus targets central cell cycle functions through transcriptional repression in vivo
Abstract
A massive and selective loss of CD4+ memory T cells occurs during the acute phase of immunodeficiency virus infections. The mechanism of this depletion is poorly understood but constitutes a key event with implications for progression. We assessed gene expression of purified T cells in Rhesus Macaques during acute SIVmac239 infection in order to define mechanisms of pathogenesis. We observe a general transcriptional program of over 1,600 interferon-stimulated genes induced in all T cells by the infection. Furthermore, we identify 113 transcriptional changes that are specific to virally infected cells. A striking downregulation of several key cell cycle regulator genes was observed and shared promotor-region E2F binding sites in downregulated genes suggested a targeted transcriptional control of an E2F regulated cell cycle program. In addition, the upregulation of the gene for the fundamental regulator of RNA polymerase II, TAF7, demonstrates that viral interference with the cell cycle and transcriptional regulation programs may be critical components during the establishment of a pathogenic infection in vivo.
Conflict of interest statement
Figures




References
-
- Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature. 2005;434:1093–1097. - PubMed
-
- Li Q, Duan L, Estes JD, Ma Z-M, Rourke T, et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature. 2005;434:1148–1152. - PubMed
-
- Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–1371. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials