Impact of definitive therapy with beta-lactam monotherapy or combination with an aminoglycoside or a quinolone for Pseudomonas aeruginosa bacteremia
- PMID: 22046290
- PMCID: PMC3202542
- DOI: 10.1371/journal.pone.0026470
Impact of definitive therapy with beta-lactam monotherapy or combination with an aminoglycoside or a quinolone for Pseudomonas aeruginosa bacteremia
Abstract
Background: Bacteremia by Pseudomonas aeruginosa represents one severe infection. It is not clear whether beta-lactam monotherapy leads to similar rates of treatment success compared to combinations of beta-lactams with aminoglycosides or quinolones.
Methods: Retrospective cohort study from 3 tertiary hospitals (2 in Greece and 1 in Italy). Pseudomonas aeruginosa isolates were susceptible to a beta-lactam and an aminoglycoside or a quinolone. Patients received appropriate therapy for at least 48 hours. Primary outcome of interest was treatment success in patients with definitive beta-lactam combination therapy compared to monotherapy. Secondary outcomes were treatment success keeping the same empirical and definitive regimen, mortality, and toxicity.
Results: Out of 92 bacteremias there were 54 evaluable episodes for the primary outcome (20 received monotherapy). Treatment success was higher with combination therapy (85%) compared to beta-lactam monotherapy (65%), however not statistically significantly [Odds ratio (OR) 3.1; 95% Confidence Interval (CI) 0.69-14.7, p = 0.1]. Very long (>2 months) hospitalisation before bacteremia was the only factor independently associated with treatment success (OR 0.73; 95% CI 0.01-0.95, p = 0.046), however this result entailed few episodes. All-cause mortality did not differ significantly between combination therapy [6/31 (19%)] and monotherapy [8/19 (42%)], p = 0.11. Only Charlson comorbidity index was associated with excess mortality (p = 0.03).
Conclusion: Our study, in accordance with previous ones, indicates that the choice between monotherapy and combination therapy may not affect treatment success significantly. However, our study does not have statistical power to identify small or moderate differences. A large randomized controlled trial evaluating this issue is justified.
Conflict of interest statement
References
-
- Blot S, Vandewoude K, Hoste E, Colardyn F. Reappraisal of attributable mortality in critically ill patients with nosocomial bacteraemia involving Pseudomonas aeruginosa. J Hosp Infect. 2003;53:18–24. - PubMed
-
- Kvitko CH, Rigatto MH, Moro AL, Zavascki AP. Polymyxin B versus other antimicrobials for the treatment of pseudomonas aeruginosa bacteraemia. J Antimicrob Chemother. 2011;66:175–179. - PubMed
-
- Osmon S, Ward S, Fraser VJ, Kollef MH. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest. 2004;125:607–616. - PubMed
-
- Parkins MD, Gregson DB, Pitout JD, Ross T, Laupland KB. Population-based study of the epidemiology and the risk factors for Pseudomonas aeruginosa bloodstream infection. Infection. 2010;38:25–32. - PubMed
-
- Vitkauskiene A, Skrodeniene E, Dambrauskiene A, Macas A, Sakalauskas R. Pseudomonas aeruginosa bacteremia: resistance to antibiotics, risk factors, and patient mortality. Medicina (Kaunas) 2010;46:490–495. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical