Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;193(2):349-63.
doi: 10.1111/j.1469-8137.2011.03941.x. Epub 2011 Nov 4.

S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana

Affiliations
Free article

S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana

Young Jeon et al. New Phytol. 2012 Jan.
Free article

Abstract

• In this study, we examined the biochemical and physiological functions of Nicotiana benthamiana S1 domain-containing Transcription-Stimulating Factor (STF) using virus-induced gene silencing (VIGS), cosuppression, and overexpression strategies. • STF : green fluorescent protein (GFP) fusion protein colocalized with sulfite reductase (SiR), a chloroplast nucleoid-associated protein also present in the stroma. Full-length STF and its S1 domain preferentially bound to RNA, probably in a sequence-nonspecific manner. • STF silencing by VIGS or cosuppression resulted in severe leaf yellowing caused by disrupted chloroplast development. STF deficiency significantly perturbed plastid-encoded multimeric RNA polymerase (PEP)-dependent transcript accumulation. Chloroplast transcription run-on assays revealed that the transcription rate of PEP-dependent plastid genes was reduced in the STF-silenced leaves. Conversely, the exogenously added recombinant STF protein increased the transcription rate, suggesting a direct role of STF in plastid transcription. Etiolated seedlings of STF cosuppression lines showed defects in the light-triggered transition from etioplasts to chloroplasts, accompanied by reduced light-induced expression of plastid-encoded genes. • These results suggest that STF plays a critical role as an auxiliary factor of the PEP transcription complex in the regulation of plastid transcription and chloroplast biogenesis in higher plants.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources