The future of ultra-high field MRI and fMRI for study of the human brain
- PMID: 22063093
- PMCID: PMC3389184
- DOI: 10.1016/j.neuroimage.2011.10.065
The future of ultra-high field MRI and fMRI for study of the human brain
Abstract
MRI and fMRI have been used for about three and two decades respectively and much has changed over this time period, both in the quality of the data and in the range of applications for studying the brain. Apart from resolution improvements from around 4mm in the early days to below 0.5mm with modern technology, novel uses of contrast have led to the ability to sensitize images to some of the brain's structural properties at the cellular scale as well as study the localization and organization of brain function at the level of cortical columns. These developments have in part been facilitated by a continuing drive to increase the magnetic field strength. Will the next few decades see similar improvements? Here we will discuss current state of high field MRI, expected further increases in field strength, and improvements expected with these increases.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures
References
-
- Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Springer CS, Jr, Wishnia A. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature. 1994;370:199–201. - PubMed
-
- Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature. 2008;455:648–651. - PubMed
-
- Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–397. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
