Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jan;59(1):135-44.
doi: 10.1053/j.ajkd.2011.07.027. Epub 2011 Nov 8.

Fibroblast growth factor 23 and the bone-vascular axis: lessons learned from animal studies

Affiliations
Review

Fibroblast growth factor 23 and the bone-vascular axis: lessons learned from animal studies

Giacomo Zoppellaro et al. Am J Kidney Dis. 2012 Jan.

Abstract

Calcification of arteries and cardiac valves is observed commonly in dialysis patients and represents a major determinant of the heightened cardiovascular risk observed during chronic kidney disease (CKD) progression. Recent advances from clinical and basic science studies suggest that vascular calcification should be considered a systemic disease in which pathologic processes occurring in the bone and kidney contribute to calcium deposition in the vasculature. Among the factors potentially involved in the vascular-bone axis dysregulation associated with CKD, there now is increasing interest in the role of the phosphaturic hormone fibroblast growth factor 23 (FGF-23). Increased FGF-23 plasma levels are observed with a decrease in kidney function and predict the risk of future cardiovascular mortality. However, clinical data are still unclear about whether a direct pathogenetic effect of FGF-23 on vascular/kidney/bone health exists. In the last few years, a series of basic science studies, performed using engineered mice, have contributed important pathophysiologic information about FGF-23 activities. This review summarizes findings from these studies and discusses the potential role of FGF-23 during the pathologic interplay between kidney, vessels, and bone in CKD.

PubMed Disclaimer

LinkOut - more resources