Theoretical description of the spatial dependence of sickle hemoglobin polymerization
- PMID: 2207259
- PMCID: PMC1281010
- DOI: 10.1016/S0006-3495(90)82412-7
Theoretical description of the spatial dependence of sickle hemoglobin polymerization
Abstract
We have generalized the double nucleation mechanism of Ferrone et al. (Ferrone, F. A., J. Hofrichter, H. Sunshine, and W. A. Eaton. 1980. Biophys. J. 32:361-377; Ferrone, F. A., J. Hofrichter, and W. A. Eaton. 1985. J. Mol. Biol. 183:611-631) to describe the spatial dependence of the radial growth of polymer domains of sickle hemoglobin. Although this extended model requires the consideration of effects such as monomer diffusion, which are irrelevant to a spatially uniform description, no new adjustable parameters are required because diffusion constants are known independently. We find that monomer diffusion into the growing domain can keep the net unpolymerized monomer concentration approximately constant, and in that limit we present an analytic solution of the model. The model shows the features reported by Basak, S., F. A. Ferrone, and J. T. Wang (1988. Biophys J. 54:829-843) and provides a new means of determining the rate of polymer growth. When spatially integrated, the model exhibits the exponential growth seen in previous studies, although molecular parameters derived from analysis of the kinetics assuming uniformity must be modified in some cases to account for the spatially nonuniform growth. The model developed here can be easily adapted to any spatially dependent polymerization process.
Similar articles
-
Kinetics of domain formation by sickle hemoglobin polymers.Biophys J. 1988 Nov;54(5):829-43. doi: 10.1016/S0006-3495(88)83020-0. Biophys J. 1988. PMID: 3242632 Free PMC article.
-
Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach.Biophys J. 2002 Jan;82(1 Pt 1):399-406. doi: 10.1016/S0006-3495(02)75404-0. Biophys J. 2002. PMID: 11751326 Free PMC article.
-
Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism.J Mol Biol. 1985 Jun 25;183(4):611-31. doi: 10.1016/0022-2836(85)90175-5. J Mol Biol. 1985. PMID: 4020873
-
Crowding and the polymerization of sickle hemoglobin.J Mol Recognit. 2004 Sep-Oct;17(5):497-504. doi: 10.1002/jmr.698. J Mol Recognit. 2004. PMID: 15362110 Review.
-
The delay time in sickle cell disease after 40 years: A paradigm assessed.Am J Hematol. 2015 May;90(5):438-45. doi: 10.1002/ajh.23958. Epub 2015 Feb 25. Am J Hematol. 2015. PMID: 25645011 Review.
Cited by
-
Monomer diffusion and polymer alignment in domains of sickle hemoglobin.Biophys J. 1992 Jul;63(1):205-14. doi: 10.1016/S0006-3495(92)81595-3. Biophys J. 1992. PMID: 1420868 Free PMC article.
-
The inhibitory action of the chaperone BRICHOS against the α-Synuclein secondary nucleation pathway.Nat Commun. 2024 Nov 20;15(1):10038. doi: 10.1038/s41467-024-54212-2. Nat Commun. 2024. PMID: 39567476 Free PMC article.
-
Monomer diffusion into polymer domains in sickle hemoglobin.Biophys J. 1990 Oct;58(4):1067-73. doi: 10.1016/S0006-3495(90)82449-8. Biophys J. 1990. PMID: 2248990 Free PMC article.
-
Simulated formation of polymer domains in sickle hemoglobin.Biophys J. 1993 Nov;65(5):2068-77. doi: 10.1016/S0006-3495(93)81237-2. Biophys J. 1993. PMID: 8298036 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources