Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;12(10):7199-215.
doi: 10.3390/ijms12107199. Epub 2011 Oct 21.

Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia

Affiliations
Review

Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia

Shang-Der Chen et al. Int J Mol Sci. 2011.

Abstract

The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS) as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ) co-activator 1α (PGC1-α). PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.

Keywords: antioxidant enzyme; apoptosis; ischemia; mitochondrial biogenesis; oxidative stress; peroxisome proliferative activated receptor-γ co-activator 1α.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic overview of selected cellular events in the ischemic brain. The ischemic event begins with reduced blood flow to the area supplied by the occluded arteries. The lack of oxygen, glucose, and other nutrients leads to an ischemic cascade culminating in cell death. EAA = excitatory amino acid; ATP = adenosine triphosphate; CBF = cerebral blood flow; nNOS = neuronal nitric oxide synthase; NO = nitric oxide; ↑ and ↓ denote increase and decrease, respectively.
Figure 2
Figure 2
Proposed role of PGC-1α in ischemic condition. ROS overproduction may stimulate the activation of PGC-1α signaling pathway, further triggering upregulation of mitochondrial proteins, including UCP2 and SOD2, in ischemic neurons. PGC-1α also regulates NRF-1, NRF-2 and Tfam expression as well as mitochondrial biogenesis that may have protective effects in ischemic condition. PGC-1α = peroxisome proliferative activated receptor-γ co-activator 1α; UCP2 = uncoupling protein 2; SOD2 = superoxide dismutase 2; NRFs = Nuclear respiratory factors; Tfam = Mitochondrial transcription factor A; ↑ and ↘ denote increase and decrease, respectively.

References

    1. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 1985;54:1015–1069. - PubMed
    1. Ames A., 3rd CNS energy metabolism as related to function. Brain Res. Brain Res. Rev. 2000;34:42–68. - PubMed
    1. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim. Biophys. Acta. 2010;1802:92–99. - PMC - PubMed
    1. Franklin JL. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid. Redox Signal. 2011;14:1437–1448. - PMC - PubMed
    1. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. - PubMed

Publication types

MeSH terms

LinkOut - more resources