Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;51 Suppl 4(Suppl 4):138S-144S.
doi: 10.1111/j.1537-2995.2011.03376.x.

Human embryonic stem cell-derived mesenchymal stromal cells

Affiliations

Human embryonic stem cell-derived mesenchymal stromal cells

Peiman Hematti. Transfusion. 2011 Nov.

Abstract

Mesenchymal stromal cells (MSCs) originally isolated from marrow have multipotent differentiation potential and favorable immunomodulatory and anti-inflammatory properties that make them very attractive for regenerative cellular therapy. Cells with similar phenotypic characteristics have now been derived from almost all fetal, neonatal, and adult tissues; furthermore, more recently similar cells have also been generated from human embryonic stem cells (ESCs). Generation of MSCs from human ESCs provides an opportunity to study the developmental biology of human mesenchymal lineage generation in vitro. Generation of bone and cartilage from human ESC-derived MSCs and their functional characterization, both in vitro and in vivo, is also an active area of investigation as ESCs could provide an unlimited source of MSCs for potential repair of bone and cartilage defects. MSCs from adult sources are being investigated in numerous Phase I-III clinical trials for a wide variety of indications, mainly based on their immunomodulatory properties. Our group and others have shown MSCs derived from human ESCs possess immunomodulatory properties similar to marrow-derived MSCs. Immunomodulatory properties of ESC-derived MSCs could prove to be highly valuable for their potential clinical applications in the future as derivatives of human ESCs have already entered clinical arena in the context of Phase I clinical trials.

PubMed Disclaimer

References

    1. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47. - PubMed
    1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7. - PubMed
    1. Dominici M, Paolucci P, Conte P, Horwitz EM. Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation. 2009;87:S36–42. - PubMed
    1. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28. - PubMed
    1. Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg. 1999;65:22–6. - PubMed

Publication types

MeSH terms