Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;86(5):685-700.
doi: 10.1007/s00204-011-0773-3. Epub 2011 Nov 11.

Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects

Affiliations
Review

Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects

Ji-Eun Kim et al. Arch Toxicol. 2012 May.

Abstract

Magnetic nanoparticles (MNPs) represent a subclass within the overall category of nanomaterials and are widely used in many applications, particularly in the biomedical sciences such as targeted delivery of drugs or genes, in magnetic resonance imaging, and in hyperthermia (treating tumors with heat). Although the potential benefits of MNPs are considerable, there is a distinct need to identify any potential toxicity associated with these MNPs. The potential of MNPs in drug delivery stems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of MNPs generated by different surface coatings. These surface modifications alter the particokinetics and toxicity of MNPs by changing protein-MNP or cell-MNP interactions. This review contains current advances in MNPs for drug delivery and their possible organ toxicities associated with disturbance in body iron homeostasis. The importance of protein-MNP interactions and various safety considerations relating to MNP exposure are also addressed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources