Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2011 Dec:22 Suppl 1:S119-26.
doi: 10.1016/j.yebeh.2011.08.023.

Anticipating the unobserved: prediction of subclinical seizures

Affiliations
Multicenter Study

Anticipating the unobserved: prediction of subclinical seizures

Hinnerk Feldwisch-Drentrup et al. Epilepsy Behav. 2011 Dec.

Abstract

Subclinical seizures (SCS) have rarely been considered in the diagnosis and therapy of epilepsy and have not been systematically analyzed in studies on seizure prediction. Here, we investigate whether predictions of subclinical seizures are feasible and how their occurrence may affect the performance of prediction algorithms. Using the European database of long-term recordings of surface and invasive electroencephalography data, we analyzed the data from 21 patients with SCS, including in total 413 clinically manifest seizures (CS) and 3341 SCS. Based on the mean phase coherence we investigated the predictive performance of CS and SCS. The two types of seizures had similar prediction sensitivities. Significant performance was found considerably more often for SCS than for CS, especially for patients with invasive recordings. When analyzing false alarms triggered by predicting CS, a significant number of these false predictions were followed by SCS for 9 of 21 patients. Although currently observed prediction performance may not be deemed sufficient for clinical applications for the majority of the patients, it can be concluded that the prediction of SCS is feasible on a similar level as for CS and allows a prediction of more of the seizures impairing patients, possibly also reducing the number of false alarms that were in fact correct predictions of CS. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.

PubMed Disclaimer

Publication types

LinkOut - more resources