Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;43(6):645-50.
doi: 10.1007/s10863-011-9397-9. Epub 2011 Nov 12.

Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli

Affiliations

Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli

Karen Trchounian et al. J Bioenerg Biomembr. 2011 Dec.

Abstract

Escherichia coli has four [NiFe]-hydrogenases (Hyd); three of these, Hyd-1, Hyd-2 and Hyd-3 have been characterized well. In this study the requirement for the F(0)F(1)-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases Hyd-1 and Hyd-2 was examined. During fermentative growth on glucose at pH 7.5 an E. coli F(0)F(1)-ATP synthase mutant (DK8) lacked hydrogenase activity. At pH 5.5 hydrogenase activity was only 20% that of the wild type. Using in-gel activity staining, it could be demonstrated that both Hyd-1 and Hyd-2 were essentially inactive at these pHs, indicating that the residual activity at pH 5.5 was due to the hydrogen-evolving Hyd-3 enzyme. During fermentative growth in the presence of glycerol, hydrogenase activity in the mutant was highest at pH 7.5 attaining a value of 0.76 U/mg, or ~50% of wild type activity, and Hyd-2 was only partially active at this pH, while Hyd-1 was inactive. Essentially no hydrogenase activity was measured at pH 5.5 during growth with glycerol. At this pH the mutant had a hydrogenase activity that was maximally only ~10% of wild type activity with either carbon substrate but a weak activity of both Hyd-1 and Hyd-2 could be detected. Taken together, these results demonstrate for the first time that the activity of the hydrogen-oxidizing hydrogenases in E. coli depends on an active F(0)F(1)-ATP synthase during growth at high and low pH.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Microbiology (Reading). 1999 Oct;145 ( Pt 10):2903-12 - PubMed
    1. FEBS Lett. 1989 Mar 27;246(1-2):149-52 - PubMed
    1. Biotechnol Bioeng. 2006 Aug 5;94(5):821-9 - PubMed
    1. Curr Microbiol. 1998 Feb;36(2):114-8 - PubMed
    1. J Bacteriol. 1997 Nov;179(21):6736-40 - PubMed

Publication types

MeSH terms

LinkOut - more resources