Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 15;674(2-3):248-54.
doi: 10.1016/j.ejphar.2011.10.036. Epub 2011 Nov 7.

Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A₁ receptors

Affiliations

Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A₁ receptors

Jana Sawynok et al. Eur J Pharmacol. .

Abstract

The present study examined effects of caffeine on antinociception by acetaminophen in the formalin test in mice. It demonstrates that caffeine 10mg/kg inhibits antinociception produced by acetaminophen 300 mg/kg i.p. against phase 2 flinches. Chronic administration of caffeine in the drinking water (0.1, 0.3g/l) for 8 days also inhibits the action of acetaminophen. The selective adenosine A(1) receptor antagonist DPCPX 1mg/kg i.p. mimics the action of caffeine, but the selective adenosine A(2A) receptor antagonist SCH58261 3mg/kg i.p. does not. While acetaminophen produced the same effect in mice that were +/+, +/- and -/- for adenosine A(1) receptors, inhibition of antinociception by caffeine was seen only in +/+ and +/- mice. A higher dose of caffeine, 40 mg/kg, produced an intrinsic antinociception against formalin-evoked flinches, an effect also seen when caffeine was administered intrathecally. SCH58261 30 nmol, but not DPCPX 10 nmol, also produced antinociception when administered intrathecally indicating involvement of adenosine A(2A) receptors in spinal antinociception. Caffeine reversal of acetaminophen results from actions in the spinal cord, as intrathecal DPCPX 10 nmol inhibited antinociception by systemic acetaminophen; this was also observed in +/+ but not in -/- adenosine A(1) receptor mice. We propose that spinal adenosine A(1) receptors contribute to the action of acetaminophen secondarily to involvement of descending serotonin pathways and release of adenosine within the spinal cord. Inhibition of acetaminophen antinociception by doses of caffeine relevant to dietary human intake levels suggests a more detailed consideration of acetaminophen-caffeine interactions in humans is warranted.

PubMed Disclaimer

Publication types

MeSH terms