Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov 9:2:72.
doi: 10.3389/fphar.2011.00072. eCollection 2011.

Acetaminophen: beyond pain and Fever-relieving

Affiliations

Acetaminophen: beyond pain and Fever-relieving

Eric R Blough et al. Front Pharmacol. .

Abstract

Acetaminophen, also known as APAP or paracetamol, is one of the most widely used analgesics (pain reliever) and antipyretics (fever reducer). According to the U.S. Food and Drug Administration, currently there are 235 approved prescription and over-the-counter drug products containing acetaminophen as an active ingredient. When used as directed, acetaminophen is very safe and effective; however when taken in excess or ingested with alcohol hepatotoxicity and irreversible liver damage can arise. In addition to well known use pain relief and fever reduction, recent laboratory and pre-clinical studies have demonstrated that acetaminophen may also have beneficial effects on blood glucose levels, skeletal muscle function, and potential use as cardioprotective and neuroprotective agents. Extensive laboratory and pre-clinical studies have revealed that these off-label applications may be derived from the ability of acetaminophen to function as an antioxidant. Herein, we will highlight these novel applications of acetaminophen, and attempt, where possible, to highlight how these findings may lead to new directions of inquiry and clinical relevance of other disorders.

Keywords: acetaminophen; antioxidant; cardiac protection; hyperglycemia; skeletal muscle.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structure of acetaminophen (N-Acetyl-4-aminophenol). The phenolic structure with a substituent at the para position relative to the hydroxyl group allows acetaminophen to react with reactive species and possesses antioxidant activity.
Figure 2
Figure 2
Summary of acetaminophen therapeutic effects. In addition to the clinically proven analgesic/antipyretic properties, laboratory and pre-clinical studies demonstrated that acetaminophen has other beneficial effects that would increase clinical application of acetaminophen. However, clinical studies are needed to ensure its safety, efficiency, and proper dosage.

Similar articles

Cited by

References

    1. Agarwal R., Macmillan-Crow L. A., Rafferty T. M., Saba H., Roberts D. W., Fifer E. K., James L. P., Hinson J. A. (2011). Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase. J. Pharmacol. Exp. Ther. 337, 110–11610.1124/jpet.110.176321 - DOI - PMC - PubMed
    1. Al-Turk W. A., Stohs S. J. (1981). Hepatic glutathione content and aryl hydrocarbon hydroxylase activity of acetaminophen-treated mice as a function of age. Drug Chem. Toxicol. 4, 37–4810.3109/01480548109066370 - DOI - PubMed
    1. Bandyopadhyay G., Sajan M. P., Kanoh Y., Standaert M. L., Quon M. J., Reed B. C., Dikic I., Farese R. V. (2001). Glucose activates protein kinase C-zeta/lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J. Biol. Chem. 276, 35537–3554510.1074/jbc.M106042200 - DOI - PubMed
    1. Bisaglia M., Venezia V., Piccioli P., Stanzione S., Porcile C., Russo C., Mancini F., Milanese C., Schettini G. (2002). Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid beta-peptides induced oxidative stress and reduces NF-kappaB activation. Neurochem. Int. 41, 43–5410.1016/S0197-0186(01)00136-X - DOI - PubMed
    1. Boutaud O., Moore K. P., Reeder B. J., Harry D., Howie A. J., Wang S., Carney C. K., Masterson T. S., Amin T., Wright D. W., Wilson M. T., Oates J. A., Roberts L. J., II. (2010). Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl. Acad. Sci. U.S.A. 107, 2699–270410.1073/pnas.0910174107 - DOI - PMC - PubMed

LinkOut - more resources