Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Sep;34(9):824-31.
doi: 10.5301/ijao.5000051.

Extracellular DNA in biofilms

Affiliations
Review

Extracellular DNA in biofilms

Lucio Montanaro et al. Int J Artif Organs. 2011 Sep.

Abstract

Extracellular DNA (eDNA) is an important biofilm component that was recently discovered. Its presence has been initially observed in biofilms of Pseudomonas aeruginosa, Streptococcus intermedius, Streptococcus mutans, then Enterococcus faecalis and staphylococci. Autolysis is the common mechanism by which eDNA is released. In P. aeruginosa eDNA is generated by lysis of a bacterial subpopulation, under control of quorum sensing system. In E. faecalis autolysis proceeds in a fratricide mode, resulting from a process similar to necrosis of eukaryotic cells. In Staphylococcus aureus autolysis originates by an altruistic suicide, i.e., a programmed cell death similar to apoptosis of eukaryotic cells. In S. aureus autolysis is mediated by murein hydrolase, while in S. epidermidis by the autolysin protein AtlE. In P. aeruginosa eDNA is located primarily in the stalks of mushroom-shaped multicellular structures. In S. aureus the crucial role of eDNA in stabilizing biofilm is highlighted by the disgregating effect of DNase I. eDNA represents an important mechanism for horizontal gene transfer in bacteria. eDNA and other microbial structural motifs are recognized by the innate immune system via the TLR family of pattern recognition receptors (PRRs).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources