Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011:4:83-92.
doi: 10.2147/JIR.S12983. Epub 2011 Jun 2.

Apolipoprotein A-I and A-I mimetic peptides: a role in atherosclerosis

Affiliations

Apolipoprotein A-I and A-I mimetic peptides: a role in atherosclerosis

Godfrey S Getz et al. J Inflamm Res. 2011.

Abstract

Cardiovascular disease remains a major cause of morbidity and mortality in the westernized world. Atherosclerosis is the underlying cause of most cardiovascular diseases. Atherosclerosis is a slowly evolving chronic inflammatory disorder involving the intima of large and medium sized arteries that is initiated in response to high plasma lipid levels, especially LDL. Cells of both the innate and adaptive immunity are involved in this chronic inflammation. Although high plasma LDL levels are a major contributor to most stages of the evolution of atherosclerosis, HDL and its major protein apoA-I possess properties that attenuate and may even reverse atherosclerosis. Two major functions are the ability to induce the efflux of cholesterol from cells, particularly lipid-loaded macrophages, in the artery wall for transfer to the liver, a process referred to as reverse cholesterol transport, and the ability to attenuate the pro-inflammatory properties of LDL. The removal of cellular cholesterol from lipid-loaded macrophages may also be anti-inflammatory. One of the most promising therapies to enhance the anti-atherogenic, anti-inflammatory properties of HDL is apoA-I mimetic peptides. Several of these peptides have been shown to promote cellular cholesterol efflux, attenuate the production of pro-inflammatory cytokines by macrophages, and to attenuate the pro-inflammatory properties of LDL. This latter effect may be related to their high affinity for oxidized lipids present in LDL. This review discusses the functional properties of the peptides and their effect on experimental atherosclerosis and the results of initial clinical studies in humans.

Keywords: HDL; anti-inflammatory; apoA-I; atherosclerosis; mimetic peptides.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Helical wheel depiction of the several apoA-I mimetic peptide. Hydrophobic residues are yellow, acidic residue are red, and basic residues are blue. The phenylalanine residues are highlighted in red lettering.

References

    1. Packard RR, Lichtman AH, Libby P. Innate and adaptive immunity in atherosclerosis. Semin Immunopathol. 2009;31:5–22. - PMC - PubMed
    1. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–212. - PubMed
    1. Getz GS, Vanderlaan PA, Reardon CA. The immune system and murine atherosclerosis. Curr Drug Targets. 2007;8:1297–1306. - PubMed
    1. McGill HC, Jr, McMahan CA. Determinants of atherosclerosis in the young. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am J Cardiol. 1998;82:30T–36T. - PubMed
    1. McGill HC, Jr, McMahan CA, Gidding SS. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation. 2008;117:1216–1227. - PubMed

LinkOut - more resources