Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov 18;53(1):61.
doi: 10.1186/1751-0147-53-61.

Tularemia in Alaska, 1938 - 2010

Affiliations

Tularemia in Alaska, 1938 - 2010

Cristina M Hansen et al. Acta Vet Scand. .

Abstract

Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris) in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from < 1% to 50% and 4% to 18% for selected populations of wildlife species and humans, respectively. We reviewed and summarized known literature on tularemia surveillance in Alaska and summarized the epidemiological information on human cases reported to public health officials. Additionally, available F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR) analysis (MLVA) system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Number of human tularemia cases in Alaska reporting animal exposure.
Figure 2
Figure 2
Neighbor-joining dendrogram of Alaskan and 34 additional subclade A.I.Br.001/002 F. tularensis isolates based upon MLVA data. The dendrogram was generated using neighbor-joining analysis of mean character differences using PAUP 4.0b10 (D. Swofford, Sinauer Associates, Inc., Sunderland, MA). Bootstrap values ≥50, also generated using PAUP 4.0b10, are indicated and were based upon 1,000 simulations.

References

    1. Oyston PCF, Sjostedt A, Titball RW. Tularemia: bioterrorism defense renews interest in Francisella tularensis. Nat Rev Microbiol. 2004;2:967–978. doi: 10.1038/nrmicro1045. - DOI - PubMed
    1. Sjostedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann NY Acad Sci. 2007;1105:1–29. doi: 10.1196/annals.1409.009. - DOI - PubMed
    1. Hopla CE. The ecology of tularemia. Adv Vet Sci Comp Med. 1974;18:25–53. - PubMed
    1. Abd H, Johansson T, Golovliov I, Sandstrom G, Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol. 2003;69:600–606. doi: 10.1128/AEM.69.1.600-606.2003. - DOI - PMC - PubMed
    1. Olsulfiev NG, Emelyanova OS, Dunayeva TN. Comparative study of strains of B. tularense in the old and new world and their taxonomy. J Hyg Epidemiol Microbiol Immunol. 1959;3:138–149. - PubMed

Publication types

LinkOut - more resources