Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Feb 1;83(3):378-84.
doi: 10.1016/j.bcp.2011.11.002. Epub 2011 Nov 12.

Schisandrin B suppresses TGFβ1 signaling by inhibiting Smad2/3 and MAPK pathways

Affiliations
Comparative Study

Schisandrin B suppresses TGFβ1 signaling by inhibiting Smad2/3 and MAPK pathways

Eun-Jung Park et al. Biochem Pharmacol. .

Abstract

TGFβ1 plays a crucial role in the pathogenesis of vascular fibrotic diseases. Schisandra chinensis (S. chinensis), which is used as an oriental herbal medicine, is effective in the treatment of vascular injuries that cause aberrant TGFβ1 signaling. In this study, we investigated whether S. chinensis extract and its active ingredients inhibit TGFβ1 signaling in A7r5 vascular smooth muscle cells. We found that S. chinensis extract suppressed TGFβ1 signaling via inhibition of Smad2/3 phosphorylation and nuclear translocation. Among the active ingredients of S. chinensis extract, schisandrin B (SchB) most potently inhibited TGFβ1 signaling. SchB inhibited sustained phosphorylation and nuclear translocation of Smad2/3. Moreover, SchB suppressed TGFβ1-induced phosphorylation of p38 and JNK, which contributed to Smad2/3 inactivation. The present study is the first to demonstrate that S. chinensis extract and SchB inhibit TGFβ1 signaling. Our results may help future investigations to understand vascular fibrosis pathogenesis and to develop novel therapeutic strategies for treatment of vascular fibrotic diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources