Angiotensinogen and angiotensin-converting enzyme mRNA decrease and AT1 receptor mRNA and protein increase in epididymal fat tissue accompany age-induced elevation of adiposity and reductions in expression of GLUT4 and peroxisome proliferator-activated receptor (PPARγ)
- PMID: 22100841
Angiotensinogen and angiotensin-converting enzyme mRNA decrease and AT1 receptor mRNA and protein increase in epididymal fat tissue accompany age-induced elevation of adiposity and reductions in expression of GLUT4 and peroxisome proliferator-activated receptor (PPARγ)
Abstract
Elevated adiposity is one of the accompanying features of increased age in humans and animals. Angiotensin II (Ang II) is considered as growth promoting peptide to be involved in hypertrophic enlargement of adipose tissue. However, systemic renin-angiotensin system (RAS) seems to decrease with increased age of rats. Local adipose tissue RAS might be independent of the systemic one. Therefore we performed a comprehensive study using rats with increased age from 9 to 26 weeks and evaluated angiotensinogen, angiotensin-converting enzyme (ACE) and AT(1) receptor mRNA in epididymal adipose tissue by RT-PCR. In addition, we determined AT(1) receptor protein by Western blotting and Ang II binding. These RAS parameters were correlated with expression of selected adiposity-dependent proteins such as leptin, adiponectin, insulin-dependent glucose transporter (GLUT4) and PPARgamma. Angiotensinogen and ACE expression decreased with increased age and adiposity. On the contrary, AT(1) receptor mRNA and protein was significantly elevated in 26-week-old rats though the Ang II binding was not different between 9 and 26-week-old animals. These results suggest dynamic adaptation of local adipose tissue RAS components to increased age and adiposity most likely by decreasing local Ang II formation which is thereafter compensated by increased expression of AT(1) receptor. However, this increase in AT(1) receptor mRNA and protein is not reflected in increased receptor binding. We believe that this complex regulation of adipose tissue RAS slows down the negative age and adiposity related changes in adipose tissue leptin, adiponectin, GLUT4 and PPARgamma.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous