Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Jan 10;51(1):286-95.
doi: 10.1021/bi201230p. Epub 2011 Dec 9.

The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing

Affiliations
Comparative Study

The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing

James R Birtley et al. Biochemistry. .

Abstract

Endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 cooperate to trim a vast variety of antigenic peptide precursors to generate mature epitopes for binding to major histocompatibility class I molecules. We report here the first structure of ERAP2 determined at 3.08 Å by X-ray crystallography. On the basis of residual electron density, a lysine residue has been modeled in the active site of the enzyme; thus, the structure corresponds to an enzyme-product complex. The overall domain organization is highly similar to that of the recently determined structure of ERAP1 in its closed conformation. A large internal cavity adjacent to the catalytic site can accommodate large peptide substrates. The ERAP2 structure provides a structural explanation for the different peptide N-terminal specificities between ERAP1 and ERAP2 and suggests that such differences extend throughout the whole peptide sequence. A noncrystallographic dimer observed may constitute a model for a proposed ERAP1-ERAP2 heterodimer. Overall, the structure helps explain how two homologous aminopeptidases cooperate to process a large variety of sequences, a key property of their biological role.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources