Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Oct 5;265(28):17050-4.

recA protein filaments bind two molecules of single-stranded DNA with off rates regulated by nucleotide cofactor

Affiliations
  • PMID: 2211610
Free article

recA protein filaments bind two molecules of single-stranded DNA with off rates regulated by nucleotide cofactor

A Zlotnick et al. J Biol Chem. .
Free article

Abstract

To probe the role of nucleotide cofactor in the binding of single-stranded DNA to recA protein, we have developed a sedimentation assay using 5'-labeled 32P-poly(dT).recA.poly(dT) complexes sediment quantitatively when centrifuged at 100,000 x g for 45 min, whereas free poly(dT) remains in the supernatant. In the presence of ATP, between 6 and 7 bases cosediment per recA monomer; but when ADP is present or in the absence of added nucleotide cofactor, only 3-3.5 bases/recA monomer cosediment. In competition experiments in which recA.32P-poly(dT) complexes are incubated with unlabeled poly(dT), we again find 3-3.5 bases of labeled poly(dT) cosedimenting per recA monomer when no nucleotide cofactor is present. However, when the same experiment is performed with ATP, only half of the expected 6-7 bases of labeled poly(dT) remain bound to the DNA, demonstrating that half of the poly(dT) in the complex exchanges rapidly with free poly(dT), whereas the other half equilibrates slowly, like poly(dT) in the absence of nucleotide. The rate of exchange of the second more tightly bound poly(dT) is accelerated when ADP is present. Our observations are rationalized by a model in which each recA protein helical filament binds two strands of poly(dT) with a stoichiometry of 3-3.5 bases/recA monomer/strand.

PubMed Disclaimer

MeSH terms

LinkOut - more resources