Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Sep;24(9):1203-19.
doi: 10.1002/jbm.820240906.

Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo

Affiliations
Comparative Study

Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo

B Chehroudi et al. J Biomed Mater Res. 1990 Sep.

Abstract

A desirable feature of an implant surface which penetrates epithelium would be that the surface impedes epithelial downgrowth. Previous experiments have shown that the micromachined, horizontally oriented grooves on the percutaneous implant surface can impede epithelial downgrowth (Chehroudi et al., J. Biomed. Mater. Res., 22, 459 (1988) and 23, 1067 (1989)). However, little is known of the effect of varying groove parameters such as depth, spacing, and orientation on epithelial downgrowth and attachment of epithelial (E)-cells and fibroblasts (F) to percutaneous implants in vivo. Grooves were produced with a 30-micron pitch and depths of 22 microns, 10 microns, or 3 microns. In addition, 10-microns- and 3-microns-deep grooves were made with pitches of 39 microns and 7 microns, respectively. Implants with grooves oriented either horizontally or vertically to the long axis of the implant as well as smooth control surfaces were coated with 50 nm of titanium and placed in the parietal area of rats for a period of 7 days. Close attachment of E-cells was found on the smooth, 10-microns- and 3-microns-deep, horizontally or vertically aligned grooved surfaces; in contrast, E-cells bridged over the 22-microns-deep, horizontally oriented grooves. F formed a capsule on the smooth surface as well as the 10-microns- and 3-microns-deep horizontally oriented grooves, but F inserted obliquely into the 22-microns-deep, horizontally aligned grooved surface. Histomorphometric measurements indicated that the epithelial downgrowth was greatest on the vertically oriented grooved and smooth surfaces and was shortest on the 22-microns-deep and 10-microns-deep horizontally aligned grooved surfaces. These differences indicate that epithelial downgrowth was accelerated on the vertically oriented grooved surfaces and inhibited on the horizontally oriented grooved surfaces. Moreover, the mechanism of inhibition of the epithelial downgrowth may differ among these surfaces. E-cells bridged over the 22-microns-deep grooves and their migration appeared to be inhibited by the F that inserted into the implant surface. In the shallower horizontal grooves, however, epithelial downgrowth was probably inhibited by contact guidance because there was no evidence of F inserting obliquely into the implant surface.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources