Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome
- PMID: 22120178
- PMCID: PMC3517299
- DOI: 10.1038/nm.2576
Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome
Abstract
Monogenic neurodevelopmental disorders provide key insights into the pathogenesis of disease and help us understand how specific genes control the development of the human brain. Timothy syndrome is caused by a missense mutation in the L-type calcium channel Ca(v)1.2 that is associated with developmental delay and autism. We generated cortical neuronal precursor cells and neurons from induced pluripotent stem cells derived from individuals with Timothy syndrome. Cells from these individuals have defects in calcium (Ca(2+)) signaling and activity-dependent gene expression. They also show abnormalities in differentiation, including decreased expression of genes that are expressed in lower cortical layers and in callosal projection neurons. In addition, neurons derived from individuals with Timothy syndrome show abnormal expression of tyrosine hydroxylase and increased production of norepinephrine and dopamine. This phenotype can be reversed by treatment with roscovitine, a cyclin-dependent kinase inhibitor and atypical L-type-channel blocker. These findings provide strong evidence that Ca(v)1.2 regulates the differentiation of cortical neurons in humans and offer new insights into the causes of autism in individuals with Timothy syndrome.
Figures




Comment in
-
Diagnosis in a dish: your skin can help your brain.Nat Med. 2011 Dec 6;17(12):1558-9. doi: 10.1038/nm.2599. Nat Med. 2011. PMID: 22146459 No abstract available.
-
Neurodevelopmental disorders: Getting with the reprogram.Nat Rev Neurosci. 2011 Dec 20;13(1):1. doi: 10.1038/nrn3167. Nat Rev Neurosci. 2011. PMID: 22183429 No abstract available.
References
-
- Splawski I, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31. - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases