Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jan;93(2):503-16.
doi: 10.1007/s00253-011-3730-4. Epub 2011 Nov 27.

L-aspartate dehydrogenase: features and applications

Affiliations
Review

L-aspartate dehydrogenase: features and applications

Yinxia Li et al. Appl Microbiol Biotechnol. 2012 Jan.

Abstract

L-amino acid dehydrogenases are a group of enzymes that catalyze the reversible oxidative deamination of L-amino acids to their corresponding 2-oxoacids, using either nicotinamide adenine dinucleotide (NAD(+)) or nicotinamide adenine dinucleotide phosphate (NADP(+)) as cofactors. These enzymes have been studied widely because of their potential applications in the synthesis of amino acids for use in production of pharmaceutical peptides, herbicides and insecticides, in biosensors or diagnostic kits, and development of coenzyme regeneration systems for industrial processes. This article presents a review of the currently available data about the recently discovered amino acid dehydrogenase superfamily member L-aspartate dehydrogenase (L-AspDH), their relevant catalytic properties and speculated physiological roles, and potential for biotechnological applications. The proposed classification of L-AspDH on the basis of bioinformatic information and potential role in vivo into NadB (NAD biosynthesis-related) and non-NadB type is unique. In particular, the mesophilic non-NadB type L-AspDH is a novel group of amino acid dehydrogenases with great promise as potential industrial biocatalysts owing to their relatively high catalytic properties at room temperature. Considering that only a few L-AspDH homologs have been characterized so far, identification and prodigious enzymological research of the new members will be necessary to shed light on the gray areas pertaining to these enzymes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources