Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun 1;520(8):1687-701.
doi: 10.1002/cne.23007.

Sensillum-specific, topographic projection patterns of olfactory receptor neurons in the antennal lobe of the cockroach Periplaneta americana

Affiliations

Sensillum-specific, topographic projection patterns of olfactory receptor neurons in the antennal lobe of the cockroach Periplaneta americana

Hidehiro Watanabe et al. J Comp Neurol. .

Abstract

In vertebrates and many invertebrates, olfactory signals detected by peripheral olfactory receptor neurons (ORNs) are conveyed to a primary olfactory center with glomerular organization in which odor-specific activity patterns are generated. In the cockroach, Periplaneta americana, ORNs in antennal olfactory sensilla project to 205 unambiguously identifiable antennal lobe (AL) glomeruli that are classified into 10 glomerular clusters (T1-T10 glomeruli) innervated by distinct sensory tracts. In this study we employed single sensillum staining techniques and investigated the topographic projection patterns of individual ORNs to elucidate the relationship between sensillum types and glomerular organization in the AL. Axons of almost all ORNs projected to individual glomeruli. Axons of ORNs in perforated basiconic sensilla selectively innervated the anterodorsal T1-T4 glomeruli, whereas those in trichoid and grooved basiconic sensilla innervated the posteroventral T5-T9 glomeruli. About 90% of stained ORNs in trichoid sensilla sent axons to the T5 glomeruli and more than 90% of ORNs in grooved basiconic sensilla innervated the T6, T8, and T9 glomeruli. The T5 and T9 glomeruli exclusively receive sensory inputs from the trichoid and grooved basiconic sensilla, respectively. All investigated glomeruli received convergent input from a single type of sensillum except F11 glomerulus in the T6 glomeruli, which was innervated from both trichoid and grooved basiconic sensilla. These results suggest that ORNs in distinct sensillum types project to glomeruli in distinct glomerular clusters. Since ORNs in distinct sensillum types are each tuned to distinct subsets of odorant molecules, the AL is functionally compartmentalized into groups of glomeruli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources