Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jan;60(2):208-12.
doi: 10.1016/j.neuint.2011.11.009. Epub 2011 Nov 22.

Reactive oxygen species and ischemic cerebrovascular disease

Affiliations
Review

Reactive oxygen species and ischemic cerebrovascular disease

Inan Olmez et al. Neurochem Int. 2012 Jan.

Abstract

Stroke is an emerging major health problem often resulting in death or disability. Hyperlipidemia, high blood pressure and diabetes are well established risk factors. Endothelial dysfunction associated with these risk factors underlies pathological processes leading to atherogenesis and cerebral ischemic injury. While mechanisms of disease are complex, endothelial dysfunction involves decreased nitric oxide (NO) and elevated levels of reactive oxygen species (ROS). At physiological levels, ROS participate in regulation of cellular metabolism. However, when ROS increase to toxic levels through imbalance of production and neutralization by antioxidant enzymes, they cause cellular injury in the form of lipid peroxidation, protein oxidation and DNA damage. Central nervous system cells are more vulnerable to ROS toxicity due to their inherent higher oxidative metabolism and less antioxidant enzymes, as well as higher content of membranous fatty acids. During ischemic stroke, ROS concentration rises from normal low levels to a peak point during reperfusion possibly underlying apoptosis or cellular necrosis. Clinical trials and animal studies have shown that natural compounds can reduce oxidative stress due to excessive ROS through their antioxidant properties. With further study, we may be able to incorporate these compounds into clinical use with potential efficacy for both the treatment and prevention of stroke.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances