Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2012 May 1;30(13):1415-21.
doi: 10.1200/JCO.2011.34.8987. Epub 2011 Nov 28.

Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children's Oncology Group

Affiliations
Multicenter Study

Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children's Oncology Group

Javier G Blanco et al. J Clin Oncol. .

Abstract

Purpose: Carbonyl reductases (CBRs) catalyze reduction of anthracyclines to cardiotoxic alcohol metabolites. Polymorphisms in CBR1 and CBR3 influence synthesis of these metabolites. We examined whether single nucleotide polymorphisms in CBR1 (CBR1 1096G>A) and/or CBR3 (CBR3 V244M) modified the dose-dependent risk of anthracycline-related cardiomyopathy in childhood cancer survivors.

Patients and methods: One hundred seventy survivors with cardiomyopathy (patient cases) were compared with 317 survivors with no cardiomyopathy (controls; matched on cancer diagnosis, year of diagnosis, length of follow-up, and race/ethnicity) using conditional logistic regression techniques.

Results: A dose-dependent association was observed between cumulative anthracycline exposure and cardiomyopathy risk (0 mg/m(2): reference; 1 to 100 mg/m(2): odds ratio [OR], 1.65; 101 to 150 mg/m(2): OR, 3.85; 151 to 200 mg/m(2): OR, 3.69; 201 to 250 mg/m(2): OR, 7.23; 251 to 300 mg/m(2): OR, 23.47; > 300 mg/m(2): OR, 27.59; P(trend) < .001). Among individuals carrying the variant A allele (CBR1:GA/AA and/or CBR3:GA/AA), exposure to low- to moderate-dose anthracyclines (1 to 250 mg/m(2)) did not increase the risk of cardiomyopathy. Among individuals with CBR3 V244M homozygous G genotypes (CBR3:GG), exposure to low- to moderate-dose anthracyclines increased cardiomyopathy risk when compared with individuals with CBR3:GA/AA genotypes unexposed to anthracyclines (OR, 5.48; P = .003), as well as exposed to low- to moderate-dose anthracyclines (OR, 3.30; P = .006). High-dose anthracyclines (> 250 mg/m(2)) were associated with increased cardiomyopathy risk, irrespective of CBR genotype status.

Conclusion: This study demonstrates increased anthracycline-related cardiomyopathy risk at doses as low as 101 to 150 mg/m(2). Homozygosis for G allele in CBR3 contributes to increased cardiomyopathy risk associated with low- to moderate-dose anthracyclines, such that there seems to be no safe dose for patients homozygous for the CBR3 V244M G allele. These results suggest a need for targeted intervention for those at increased risk of cardiomyopathy.

PubMed Disclaimer

Conflict of interest statement

Authors' disclosures of potential conflicts of interest and author contributions are found at the end of this article.

Figures

Fig 1.
Fig 1.
Dose-response relationship between cumulative anthracycline exposure and risk of cardiomyopathy. Patients with no exposure to anthracyclines served as the referent group. Magnitude of risk is expressed as odds ratio, which was obtained using conditional logistic regression adjusting for age at diagnosis, sex, and chest radiation.
Fig 2.
Fig 2.
Dose-response relationship between cumulative anthracycline exposure and risk of cardiomyopathy stratified by patients' CBR3 genotype status (CBR3:GG and CBR3:GA/AA). Patients with no exposure to anthracyclines and carrying CBR3:GA/AA genotype served as the referent group. Magnitude of risk is expressed as odds ratio, which was obtained using conditional logistic regression adjusting for age at diagnosis, sex, and chest radiation.

Comment in

References

    1. Kremer LCM, Caron HN. Anthracycline cardiotoxicity in children. N Engl J Med. 2004;351:120–121. - PubMed
    1. Wouters KA, Kremer LCM, Miller TL, et al. Protecting against anthracycline-induced myocardial damage: A review of the most promising strategies. Br J Haematol. 2005;131:561–578. - PubMed
    1. Bryant J, Picot J, Levitt G, et al. Cardioprotection against the toxic effects of anthracyclines given to children with cancer: A systematic review. Health Technol Assess. 2007;11:1–84. - PubMed
    1. Kremer LCM, van der Pal HJH, Offringa M, et al. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: A systematic review. Ann Oncol. 2002;13:819–829. - PubMed
    1. Mulrooney DA, Yeazel MW, Kawashima T, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: Retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. - PMC - PubMed

Publication types

MeSH terms