Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor
- PMID: 22124147
- PMCID: PMC3379699
- DOI: 10.1113/jphysiol.2011.219717
Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor
Abstract
Nutritional factors can induce profound neuroplastic changes in the enteric nervous system (ENS), responsible for changes in gastrointestinal (GI) motility. However, long-term effects of a nutritional imbalance leading to obesity, such as Western diet (WD), upon ENS phenotype and control of GI motility remain unknown. Therefore, we investigated the effects of WD-induced obesity (DIO) on ENS phenotype and function as well as factors involved in functional plasticity. Mice were fed with normal diet (ND) or WD for 12 weeks. GI motility was assessed in vivo and ex vivo. Myenteric neurons and glia were analysed with immunohistochemical methods using antibodies against Hu, neuronal nitric oxide synthase (nNOS), Sox-10 and with calcium imaging techniques. Leptin and glial cell line-derived neurotrophic factor (GDNF) were studied using immunohistochemical, biochemical or PCR methods in mice and primary culture of ENS. DIO prevented the age-associated decrease in antral nitrergic neurons observed in ND mice. Nerve stimulation evoked a stronger neuronal Ca(2+) response in WD compared to ND mice. DIO induced an NO-dependent increase in gastric emptying and neuromuscular transmission in the antrum without any change in small intestinal transit. During WD but not ND, a time-dependent increase in leptin and GDNF occurred in the antrum. Finally, we showed that leptin increased GDNF production in the ENS and induced neuroprotective effects mediated in part by GDNF. These results demonstrate that DIO induces neuroplastic changes in the antrum leading to an NO-dependent acceleration of gastric emptying. In addition, DIO induced neuroplasticity in the ENS is likely to involve leptin and GDNF.
Figures
Comment in
-
Diet and gastric neurons.J Physiol. 2012 Mar 1;590(5):1015. doi: 10.1113/jphysiol.2011.225250. J Physiol. 2012. PMID: 22399817 Free PMC article. No abstract available.
References
-
- Abdo H, Derkinderen P, Gomes P, Chevalier J, Aubert P, Masson D, Galmiche J-P, Vanden Berghe P, Neunlist M, Lardeux B. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J. 2010;24:1082–1094. - PubMed
-
- Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295:E1323–E1332. - PubMed
-
- Begriche K, Lettéron P, Abbey-Toby A, Vadrot N, Robin M-A, Bado A, Pessayre D, Fromenty B. Partial leptin deficiency favors diet-induced obesity and related metabolic disorders in mice. Am J Physiol Endocrinol Metab. 2008;294:E939–E951. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous