A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation
- PMID: 22125522
- PMCID: PMC3222220
- DOI: 10.3389/fncom.2011.00053
A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation
Abstract
Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated.
Keywords: biological classifier; cortico-striatal; hierarchical; hybrid model; reinforcement; unsupervised.
Figures





Similar articles
-
A model for size- and rotation-invariant pattern processing in the visual system.Biol Cybern. 1984;51(2):113-21. doi: 10.1007/BF00357924. Biol Cybern. 1984. PMID: 6509123
-
Invariance of object detection in untrained deep neural networks.Front Comput Neurosci. 2022 Nov 3;16:1030707. doi: 10.3389/fncom.2022.1030707. eCollection 2022. Front Comput Neurosci. 2022. PMID: 36405785 Free PMC article.
-
A hybrid learning network for shift-invariant recognition.Neural Netw. 2001 Oct;14(8):1061-73. doi: 10.1016/s0893-6080(01)00063-6. Neural Netw. 2001. PMID: 11681751
-
Learning Invariant Object and Spatial View Representations in the Brain Using Slow Unsupervised Learning.Front Comput Neurosci. 2021 Jul 21;15:686239. doi: 10.3389/fncom.2021.686239. eCollection 2021. Front Comput Neurosci. 2021. PMID: 34366818 Free PMC article. Review.
-
Achieving visual object constancy across plane rotation and depth rotation.Acta Psychol (Amst). 1999 Sep;102(2-3):221-45. doi: 10.1016/s0001-6918(98)00052-3. Acta Psychol (Amst). 1999. PMID: 10504882 Review.
Cited by
-
The ripple pond: enabling spiking networks to see.Front Neurosci. 2013 Nov 15;7:212. doi: 10.3389/fnins.2013.00212. eCollection 2013. Front Neurosci. 2013. PMID: 24298234 Free PMC article.
-
Deep supervised, but not unsupervised, models may explain IT cortical representation.PLoS Comput Biol. 2014 Nov 6;10(11):e1003915. doi: 10.1371/journal.pcbi.1003915. eCollection 2014 Nov. PLoS Comput Biol. 2014. PMID: 25375136 Free PMC article.
-
The challenge of understanding the brain: where we stand in 2015.Neuron. 2015 May 20;86(4):864-882. doi: 10.1016/j.neuron.2015.03.032. Neuron. 2015. PMID: 25996132 Free PMC article. Review.
-
Modeling invariant object processing based on tight integration of simulated and empirical data in a Common Brain Space.Front Comput Neurosci. 2012 Mar 9;6:12. doi: 10.3389/fncom.2012.00012. eCollection 2012. Front Comput Neurosci. 2012. PMID: 22408617 Free PMC article.
References
Grants and funding
LinkOut - more resources
Full Text Sources