Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2011 Nov 25;3(6):33.
doi: 10.1186/alzrt95.

Predicting Alzheimer's risk: why and how?

Affiliations
Editorial

Predicting Alzheimer's risk: why and how?

Deborah E Barnes et al. Alzheimers Res Ther. .

Abstract

Because the pathologic processes that underlie Alzheimer's disease (AD) appear to start 10 to 20 years before symptoms develop, there is currently intense interest in developing techniques to accurately predict which individuals are most likely to become symptomatic. Several AD risk prediction strategies - including identification of biomarkers and neuroimaging techniques and development of risk indices that combine traditional and non-traditional risk factors - are being explored. Most AD risk prediction strategies developed to date have had moderate prognostic accuracy but are limited by two key issues. First, they do not explicitly model mortality along with AD risk and, therefore, do not differentiate individuals who are likely to develop symptomatic AD prior to death from those who are likely to die of other causes. This is critically important so that any preventive treatments can be targeted to maximize the potential benefit and minimize the potential harm. Second, AD risk prediction strategies developed to date have not explored the full range of predictive variables (biomarkers, imaging, and traditional and non-traditional risk factors) over the full preclinical period (10 to 20 years). Sophisticated modeling techniques such as hidden Markov models may enable the development of a more comprehensive AD risk prediction algorithm by combining data from multiple cohorts. As the field moves forward, it will be critically important to develop techniques that simultaneously model the risk of mortality as well as the risk of AD over the full preclinical spectrum and to consider the potential harm as well as the benefit of identifying and treating high-risk older patients.

PubMed Disclaimer

References

    1. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–128. doi: 10.1016/S1474-4422(09)70299-6. - DOI - PMC - PubMed
    1. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:280–292. doi: 10.1016/j.jalz.2011.03.003. - DOI - PMC - PubMed
    1. Cui Y, Liu B, Luo S, Zhen X, Fan M, Liu T, Zhu W, Park M, Jiang T, Jin JS. Alzheimer's Disease Neuroimaging Initiative. Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors. PLoS One. 2011;6:e21896. doi: 10.1371/journal.pone.0021896. - DOI - PMC - PubMed
    1. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5:735–741. doi: 10.1016/S1474-4422(06)70537-3. - DOI - PubMed
    1. Barnes DE, Covinsky KE, Whitmer RA, Kuller LH, Lopez OL, Yaffe K. Predicting Barnes and Lee risk of dementia in older adults: the late-life dementia risk index. Neurology. 2009;73:173–179. doi: 10.1212/WNL.0b013e3181a81636. - DOI - PMC - PubMed

Publication types