Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011;12(6):1469-72.

Use of an artificial neural network to determine prognostic factors in colorectal cancer patients

Affiliations
  • PMID: 22126483
Free article
Comparative Study

Use of an artificial neural network to determine prognostic factors in colorectal cancer patients

Mahmood Reza Gohari et al. Asian Pac J Cancer Prev. 2011.
Free article

Abstract

Background and objectives: The aim of this study was to determine the prognostic factors of Iranian colorectal cancer (CRC) patients and their importance using an artificial neural network (ANN) model.

Methods: This study was a historical cohort study and the data gathered from 1,219 registered CRC patients between January 2002 and October 2007 at the Research Center for Gastroenterology and Liver Disease of Shahid Beheshti University of Medical Sciences, Tehran, Iran. For determining the risk factors and survival prediction of patients, neural network (NN) and Cox regression models were used, utilizing R 2.12.0 software.

Results: One, three and five-year estimated survival probability in colon patients were 0.92, 0.71, and 0.48 and for rectum patients were 0.86, 0.71, and 0.42, respectively. By the ANN model, pathologic distant metastasis, pathologic regional lymph nodes, tumor grade, high risk behavior, pathologic primary tumor, familial history and tumor size variables were determined as ordered important factors for colon cancer. Tumor grade, pathologic stage, age at diagnosis, tumor size, high risk behavior, pathologic distant metastasis and first treatment variables were ordered important factors for rectum cancer. The ANN model lead to more accurate predictions compared to the Cox model (true prediction of 89.0% vs. 78.6% for colon and 82.7% vs. 70.7% for rectum cancer patients).

Conclusion: This study showed that ANN model is a more powerful tool in survival prediction and influential factors of the CRC patients compared to the Cox regression model. Therefore, this model is recommended for predicting and determining of risk factors of these patients.

PubMed Disclaimer

Publication types