Gαi2 signaling promotes skeletal muscle hypertrophy, myoblast differentiation, and muscle regeneration
- PMID: 22126963
- DOI: 10.1126/scisignal.2002038
Gαi2 signaling promotes skeletal muscle hypertrophy, myoblast differentiation, and muscle regeneration
Abstract
Skeletal muscle atrophy results in loss of strength and an increased risk of mortality. We found that lysophosphatidic acid, which activates a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, stimulated skeletal muscle hypertrophy through activation of Gα(i2). Expression of a constitutively active mutant of Gα(i2) stimulated myotube growth and differentiation, effects that required the transcription factor NFAT (nuclear factor of activated T cells) and protein kinase C. In addition, expression of the constitutively active Gα(i2) mutant inhibited atrophy caused by the cachectic cytokine TNFα (tumor necrosis factor-α) by blocking an increase in the abundance of the mRNA encoding the E3 ubiquitin ligase MuRF1 (muscle ring finger 1). Gα(i2) activation also enhanced muscle regeneration and caused a switch to oxidative fibers. Our study thus identifies a pathway that promotes skeletal muscle hypertrophy and differentiation and demonstrates that Gα(i2)-induced signaling can act as a counterbalance to MuRF1-mediated atrophy, indicating that receptors that act through Gα(i2) might represent potential targets for preventing skeletal muscle wasting.
Similar articles
-
Suppression of atrogin-1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes.Metabolism. 2013 Oct;62(10):1495-502. doi: 10.1016/j.metabol.2013.05.018. Epub 2013 Jul 15. Metabolism. 2013. PMID: 23866982
-
PI3 kinase regulation of skeletal muscle hypertrophy and atrophy.Curr Top Microbiol Immunol. 2010;346:267-78. doi: 10.1007/82_2010_78. Curr Top Microbiol Immunol. 2010. PMID: 20593312 Review.
-
Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study.Oncol Rep. 2015 May;33(5):2261-8. doi: 10.3892/or.2015.3845. Epub 2015 Mar 9. Oncol Rep. 2015. PMID: 25760630
-
Skeletal muscle hypertrophy and atrophy signaling pathways.Int J Biochem Cell Biol. 2005 Oct;37(10):1974-84. doi: 10.1016/j.biocel.2005.04.018. Int J Biochem Cell Biol. 2005. PMID: 16087388 Review.
-
Loss of SPARC in mouse skeletal muscle causes myofiber atrophy.Muscle Nerve. 2013 Nov;48(5):791-9. doi: 10.1002/mus.23822. Epub 2013 Aug 30. Muscle Nerve. 2013. PMID: 23424163
Cited by
-
cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration.Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E1-17. doi: 10.1152/ajpendo.00555.2011. Epub 2012 Feb 21. Am J Physiol Endocrinol Metab. 2012. PMID: 22354781 Free PMC article. Review.
-
The Role of Muscle Biomarkers in Adolescent Idiopathic Scoliosis.J Clin Med. 2023 Dec 11;12(24):7616. doi: 10.3390/jcm12247616. J Clin Med. 2023. PMID: 38137689 Free PMC article. Review.
-
The sympathetic nervous system regulates skeletal muscle motor innervation and acetylcholine receptor stability.Acta Physiol (Oxf). 2019 Mar;225(3):e13195. doi: 10.1111/apha.13195. Epub 2018 Oct 22. Acta Physiol (Oxf). 2019. PMID: 30269419 Free PMC article.
-
Apelin Resistance Contributes to Muscle Loss during Cancer Cachexia in Mice.Cancers (Basel). 2022 Apr 2;14(7):1814. doi: 10.3390/cancers14071814. Cancers (Basel). 2022. PMID: 35406586 Free PMC article.
-
Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia.J Cachexia Sarcopenia Muscle. 2020 Aug;11(4):929-946. doi: 10.1002/jcsm.12561. Epub 2020 Mar 11. J Cachexia Sarcopenia Muscle. 2020. PMID: 32159297 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases