Complexation of formaldoxime with water. Infrared matrix isolation and theoretical studies
- PMID: 22127136
- DOI: 10.1016/j.saa.2011.10.069
Complexation of formaldoxime with water. Infrared matrix isolation and theoretical studies
Abstract
The 1:1, 1:2 and 2:1 formaldoxime-water complexes isolated in the argon matrices have been studied by help of FTIR spectroscopy and MP2/6-311++G(2d,2p) method. The calculations predicted the stability of the three CH(2)NOH···H(2)O isomeric complexes, three CH(2)NOH···(H(2)O)(2) ones and one (CH(2)NOH)(2)···H(2)O complex. The analysis of the experimental spectra and their comparison with theoretical ones indicated that both the 1:1 and 1:2 complexes trapped in solid argon have the most stable cyclic structures stabilized by the O-H···O and O-H···N bonds between the formaldoxime and water molecules. In the 1:2 complex formaldoxime interacts with the water dimer, one H(2)O molecule acts as a proton acceptor for the OH group of formaldoxime whereas the second H(2)O molecule acts as a proton donor toward the nitrogen atom of the formaldoxime molecule. In the (CH(2)NOH)(2)···H(2)O complex the OH group of the water molecule acts as a proton donor toward one of the oxygen atoms of the formaldoxime cyclic dimer.
Copyright © 2011 Elsevier B.V. All rights reserved.