Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec 23;17(52):14792-804.
doi: 10.1002/chem.201102630. Epub 2011 Nov 30.

C6-C8 bridged epothilones: consequences of installing a conformational lock at the edge of the macrocycle

Affiliations

C6-C8 bridged epothilones: consequences of installing a conformational lock at the edge of the macrocycle

Weiqiang Zhan et al. Chemistry. .

Abstract

A series of conformationally restrained epothilone analogues with a short bridge between the methyl groups at C6 and C8 was designed to mimic the binding pose assigned to our recently reported EpoA-microtubule binding model. A versatile synthetic route to these bridged epothilone analogues has been successfully devised and implemented. Biological evaluation of the compounds against A2780 human ovarian cancer and PC3 prostate cancer cell lines suggested that the introduction of a bridge between C6-C8 reduced potency by 25-1000 fold in comparison with natural epothilone D. Tubulin assembly measurements indicate these bridged epothilone analogues to be mildly active, but without significant microtubule stabilization capacity. Molecular mechanics and DFT energy evaluations suggest the mild activity of the bridged epo-analogues may be due to internal conformational strain.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structures of natural epothilones A-D.
Figure 2
Figure 2
Structures of C6-C8 bridged epothilone analogs.
Figure 3
Figure 3
Docking poses of C6-C8 bridged epothilone analogs in the electron crystallography-determined tubulin binding site: (A) Docking poses of 1 (yellow) and 5 (cyan); (B) Docking poses of 1 (yellow) and 6 (blue). The shortest H---H contact between ligand and protein is 2.5 Å, an acceptable, though minimal, van der Waals separation.
Figure 4
Figure 4
Selected epothilone analogs with modification around C6-C8.
Figure 5
Figure 5
Tubulin assembly and microtubule cold stabilizing activity of bridged epothilones and PTX ( formula image), 5a ( formula image), 5 ( formula image), 6 ( formula image), 7 ( formula image), 8 ( formula image), 36 ( formula image), 37 ( formula image), 38 ( formula image). Tubulin (10 μM) was incubated with 50 μM of a bridged epothilone or 10 μM PTX in the presence of 1 mM GTP and 4% DMSO in PME. Assembly was monitored in terms of apparent absorption at 350 nm. The arrow indicates temperature drop from 37 °C to 4 °C. For reference, a tubulin sample in the absence of promoter (–) was also included.
Scheme 1
Scheme 1
Retrosynthetic Analysis of C6-C8 Bridged EpoA 5 by Olefin Metathesis.
Scheme 2
Scheme 2
Model Study. a) pivaldehyde, Et2O/THF, −100 °C, 70%, dr > 95%. b) t-BuOOH, VO(acac)2 (cat.), CH2Cl2, 88%; or mCPBA, CH2Cl2, 84%. c) CH2=CH(CH2)3MgBr, CuCN (cat.), Et2O, −60 → 0 °C, 89%. d) TBSOTf, 2,6-lutidine, CH2Cl2, −78°C, 85%. e) (COCl)2, Et3N, DMSO, CH2Cl2, −78 °C → RT, quant. f) 4-nitrobenzoyl chloride, pyridine, DAMP, THF, RT, 16%.
Scheme 3
Scheme 3
a) i) O3, CH2Cl2, −78 °C, then PPh3, RT; ii) ethylene glycol, PTSA (cat.), benzene, reflux; iii) HF/Pyridine, THF, 0 °C → RT, 53% (3 steps). b) (COCl)2, Et3N, DMSO, CH2Cl2, −78°C → RT, quant.
Scheme 4
Scheme 4
a) i) HF/Pyridine, THF, 0 °C → RT, 88%; ii) (COCl)2, Et3N, DMSO, CH2Cl2, −78 °C α RT, 94%. b) 16, THF, −78 °C, then H2O2, NaHCO3, 40 °C, 92%, dr > 20:1. c) t-BuOOH, VO(acac)2 (cat.), CH2Cl2, 93%, dr > 20:1 d) CH2=CH(CH2)3MgBr (8–9 equiv.), CuCN (cat.), Et2O, −55 → 0 °C, 90%. e) TBSOTf, 2,6-lutidine, CH2Cl2, −78 °C, 85%. f) (COCl)2, Et3N, DMSO, CH2Cl2, −78 °C → RT, 99%.
Scheme 5
Scheme 5
a) TFA, CH2Cl2, −20 → 0 °C, 78%. b) t-BuOOH, VO(acac)2 (cat.), CH2Cl2, 0 °C → RT, 89%, dr = 10:1 c) Ac2O, DMAP, CH2Cl2, 0 °C → RT, 93%. d) i) n-Bu4NHSO4 (cat.), CH3CN/H2O, 50 °C; ii) NaIO4, THF, RT, iii) NaClO4, NaH2PO4, 2-methyl-2-butene, t-BuOH/H2O, 45% (3 steps).
Scheme 6
Scheme 6
a) EDCI, DMAP, CH2Cl2, RT, 58%; or 2,4,6-trichlorobenzoylchloride, DMAP, Et3N, toluene, −78 → 0 °C, 86%. b) RCM, see text. c) DBU, CH2Cl2, 0 °C → RT, 96%.
Scheme 7
Scheme 7
a) i) (ClCO2CO)2, DMAP, pyridine, CH2Cl2, 0 °C, quant.; ii) NaIO4/H5IO6, THF/H2 O; iii) NaClO4, NaH2PO4, 2-methyl-2-butene, t-BuOH/H2O, 72% (2 steps). b) 2,4,6-trichlorobenzoylchloride, DMAP, Et3N, toluene, −78 → −35 °C, 49%. c) RCM, cat. 42, CH2Cl2, RT, 77%. d) NH4OH/MeOH, 0 °C then NH3/MeOH, 0 °C, 57%.
Scheme 8
Scheme 8
Retrosynthesis of C6-C8 Bridged EpoA/B by Suzuki Coupling.
Scheme 9
Scheme 9
a) See Lit. [19]. b) 16, THF, −78 °C, then H2O2, NaHCO3, 40 °C, 96%, dr > 20:1. c) t-BuOOH, VO(acac)2 (cat.), CH2Cl2, 93%, dr > 20:1 d) AllylMgBr (8.0 equiv.), CuCN (cat.), Et2O, −55 → 0 °C, 85%. e) TBSOTf, 2,6-lutidine, CH2Cl2, −78 °C, 97%. f) (COCl)2, Et3N, DMSO, CH2Cl2, −78 °C → RT, 85%. g) See Lit. [39c, 42].
Scheme 10
Scheme 10
a) 9-BBN, Cs2CO3, AsPh3, PdCl2(dppf), DMF/H2 O, RT, 46: 92%, 47: 57%. b) (DHQD)2PHAL, K2CO3, K3Fe(CN)6, CH3SO2NH2, K2OsO4 2H2O, t-BuOH/H2O, 0 °C → RT, 56: 42% (86%, BRSM), dr = 5:1; 57: 42% (87%, BRSM), dr = 4:1. c) i) NaIO4, THF/H2 O, 0 °C; ii) NaClO4, NaH2PO4, 2-methyl-2-butene, t-BuOH/H2O, 58: 78% (2 steps), 59: 58% (2 steps). d) TBAF, THF, 0 °C → RT, 60: 95%, 61: 90%. e) 2,4,6-trichlorobenzoylchloride, Et3N, DMAP, toluene, RT, 62: 51%, 63: 60%. f) TFA, CH2Cl2, −20 → 0 °C, 7: 88%, 8: 91%. g) DMDO, CH2Cl2, −50 → −30 °C, 5: 84%, dr = 2:1, 6: 52%, dr > 20:1.

Similar articles

Cited by

  • Epothilones: From discovery to clinical trials.
    Forli S. Forli S. Curr Top Med Chem. 2014;14(20):2312-21. doi: 10.2174/1568026614666141130095855. Curr Top Med Chem. 2014. PMID: 25434353 Free PMC article. Review.
  • Synthesis of isotopically labeled epothilones.
    Ganesh T, Brodie PJ, Banerjee A, Bane S, Kingston DG. Ganesh T, et al. J Labelled Comp Radiopharm. 2014 Feb;57(2):78-81. doi: 10.1002/jlcr.3144. Epub 2013 Dec 5. J Labelled Comp Radiopharm. 2014. PMID: 24307484 Free PMC article.

References

    1. Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H. J Antibiot. 1996;49:560. - PubMed
    1. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM. Cancer Res. 1995;55:2325. - PubMed
    2. Kowalski RJ, Giannakakou P, Hamel E. J Biol Chem. 1997;272:2534. - PubMed
    1. For recent general reviews on epothilones, see: Altmann KH, Florsheimer A, Bold G, Caravatti G, Wartmann M. Chimia. 2004;58:686.Altmann KH. Cur Pharm Design. 2005;11:1595.Altmann KH, Pfeiffer B, Arseniyadis S, Pratt BA, Nicolaou KC. Chemmedchem. 2007;2:396.Feyen F, Cachoux F, Gertsch J, Wartmann M, Altmann K. Acc Chem Res. 2008;41:21.

    1. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS. J Biol Chem. 1997;272:17118. - PubMed
    2. Wolff A, Technau A, Brandner G. Int J Oncol. 1997;11:123. - PubMed
    3. Altmann KH, Wartmann M, O’Reilly T. Biochim Biophys Acta. 2000;1470:M79. - PubMed
    4. Wartmann M, Altmann KH. Curr Med Chem Anticancer Agents. 2002;2:123. - PubMed
    1. Princen K, Hatse S, Vermeire K, Aquaro S, De Clercq E, Gerlach LO, Rosenkilde M, Schwartz TW, Skerlj R, Bridger G, Schols D. J Virol. 2004;78:12996. - PMC - PubMed
    2. Hatse S, Princen K, De Clercq E, Rosenkilde EMM, Schwartz TW, Hernandez-Abad PE, Skerlj RT, Bridger GJ, Schols D. Biochem Pharmacol. 2005;70:752. - PubMed
    3. Hu JS, Freeman CM, Stolberg VR, Chiu BC, Bridger GJ, Fricker SP, Lukacs NW, Chensue SW. Am J Pathol. 2006;169:424. - PMC - PubMed
    4. Schwarz MK, Wells TN. Nat Rev Drug Discov. 2002;1:347. - PubMed

Publication types