Stiffness, not inertial coupling, determines path curvature of wrist motions
- PMID: 22131378
- DOI: 10.1152/jn.00428.2011
Stiffness, not inertial coupling, determines path curvature of wrist motions
Abstract
When humans rotate their wrist in flexion-extension, radial-ulnar deviation, and combinations, the resulting paths (like the path of a laser pointer on a screen) exhibit a distinctive pattern of curvature. In this report we show that the passive stiffness of the wrist is sufficient to account for this pattern. Simulating the dynamics of wrist rotations using a demonstrably realistic model under a variety of conditions, we show that wrist stiffness can explain all characteristics of the observed pattern of curvature. We also provide evidence against other possible causes. We further demonstrate that the phenomenon is robust against variations in human wrist parameters (inertia, damping, and stiffness) and choice of model inputs. Our findings explain two previously observed phenomena: why faster wrist rotations exhibit more curvature and why path curvature rotates with pronation-supination of the forearm. Our results imply that, as in reaching, path straightness is a goal in the planning and control of wrist rotations. This requires humans to predict and compensate for wrist dynamics, but, unlike reaching, nonlinear inertial coupling (e.g., Coriolis acceleration) is insignificant. The dominant term to be compensated is wrist stiffness.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources