The modeling and simulation of visuospatial working memory
- PMID: 22132045
- PMCID: PMC2974096
- DOI: 10.1007/s11571-010-9129-6
The modeling and simulation of visuospatial working memory
Abstract
Camperi and Wang (Comput Neurosci 5:383-405, 1998) presented a network model for working memory that combines intrinsic cellular bistability with the recurrent network architecture of the neocortex. While Fall and Rinzel (Comput Neurosci 20:97-107, 2006) replaced this intrinsic bistability with a biological mechanism-Ca(2+) release subsystem. In this study, we aim to further expand the above work. We integrate the traditional firing-rate network with Ca(2+) subsystem-induced bistability, amend the synaptic weights and suggest that Ca(2+) concentration only increase the efficacy of synaptic input but has nothing to do with the external input for the transient cue. We found that our network model maintained the persistent activity in response to a brief transient stimulus like that of the previous two models and the working memory performance was resistant to noise and distraction stimulus if Ca(2+) subsystem was tuned to be bistable.
Keywords: Bistability; Calcium signaling; Computational model; Working memory.
Figures








Similar articles
-
An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory.J Comput Neurosci. 2006 Feb;20(1):97-107. doi: 10.1007/s10827-006-4791-8. Epub 2006 Feb 20. J Comput Neurosci. 2006. PMID: 16511655
-
A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability.J Comput Neurosci. 1998 Dec;5(4):383-405. doi: 10.1023/a:1008837311948. J Comput Neurosci. 1998. PMID: 9877021
-
Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability.Biol Cybern. 2005 Aug;93(2):109-18. doi: 10.1007/s00422-005-0543-5. Epub 2005 Apr 1. Biol Cybern. 2005. PMID: 15806392
-
Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory.Annu Rev Neurosci. 2017 Jul 25;40:603-627. doi: 10.1146/annurev-neuro-070815-014006. Annu Rev Neurosci. 2017. PMID: 28772102 Free PMC article. Review.
-
Beyond bistability: biophysics and temporal dynamics of working memory.Neuroscience. 2006 Apr 28;139(1):119-33. doi: 10.1016/j.neuroscience.2005.06.094. Epub 2005 Dec 2. Neuroscience. 2006. PMID: 16326020 Review.
Cited by
-
Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat.Cogn Neurodyn. 2012 Aug;6(4):307-24. doi: 10.1007/s11571-011-9183-8. Epub 2011 Nov 26. Cogn Neurodyn. 2012. PMID: 24995047 Free PMC article.
-
A Comparative Study of the Impact of Theta-Burst and High-Frequency Stimulation on Memory Performance.Front Hum Neurosci. 2016 Feb 3;10:19. doi: 10.3389/fnhum.2016.00019. eCollection 2016. Front Hum Neurosci. 2016. PMID: 26869903 Free PMC article.
-
Perception of successive brief objects as a function of stimulus onset asynchrony: model experiments based on two-stage synchronization of neuronal oscillators.Cogn Neurodyn. 2013 Dec;7(6):465-75. doi: 10.1007/s11571-013-9250-4. Epub 2013 Mar 19. Cogn Neurodyn. 2013. PMID: 24427220 Free PMC article.
-
A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus.Cogn Neurodyn. 2012 Jun;6(3):259-81. doi: 10.1007/s11571-012-9198-9. Epub 2012 Mar 25. Cogn Neurodyn. 2012. PMID: 23730357 Free PMC article.
References
-
- Abeles M. Corticonics: neural circuits of the cerebral cortex. Cambridge: Cambridge University Press; 1991.
LinkOut - more resources
Full Text Sources
Miscellaneous