Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Mar;133(3):324-33.
doi: 10.1016/j.pharmthera.2011.11.006. Epub 2011 Nov 23.

Voltage-gated calcium channels and Parkinson's disease

Affiliations
Review

Voltage-gated calcium channels and Parkinson's disease

Michael J Hurley et al. Pharmacol Ther. 2012 Mar.

Abstract

A complex interaction of environmental, genetic and epigenetic factors combine with ageing to cause the most prevalent of movement disorders Parkinson's disease. Current pharmacological treatments only tackle the symptoms and do not stop progression of the disease or reverse the neurodegenerative process. While some incidences of Parkinson's disease arise through heritable genetic defects, the cause of the majority of cases remains unknown. Likewise, why some neuronal populations are more susceptible to neurodegeneration than others is not clear, but as the molecular pathways responsible for the process of cell death are unravelled, it is increasingly apparent that disrupted cellular energy metabolism plays a central role. Precise control of cellular calcium concentrations is crucial for maintenance of energy homeostasis. Recently, differential cellular expression of neuronal voltage-gated calcium channel (Ca(V)) isoforms has been implicated in the susceptibility of vulnerable neurons to neurodegeneration in Parkinson's disease. Ca(V) channels are also involved in the synaptic plasticity response to the denervation that occurs in Parkinson's disease and following chronic treatment with anti-parkinsonian drugs. This review will examine the putative role neuronal Ca(V) channels have in the pathogenesis and treatment of Parkinson's disease.

PubMed Disclaimer

Substances