Rooting the eukaryotic tree with mitochondrial and bacterial proteins
- PMID: 22135192
- DOI: 10.1093/molbev/msr295
Rooting the eukaryotic tree with mitochondrial and bacterial proteins
Abstract
By exploiting the large body of genome data and the considerable progress in phylogenetic methodology, recent phylogenomic studies have provided new insights into the relationships among major eukaryotic groups. However, confident placement of the eukaryotic root remains a major challenge. This is due to the large evolutionary distance separating eukaryotes from their closest relatives, the Archaea, implying a weak phylogenetic signal and strong long-branch attraction artifacts. Here, we apply a new approach to the rooting of the eukaryotic tree by using a subset of genomic information with more recent evolutionary origin-mitochondrial sequences, whose closest relatives are α-Proteobacteria. For this, we identified and assembled a data set of 42 mitochondrial proteins (mainly encoded by the nuclear genome) and performed Bayesian and maximum likelihood analyses. Taxon sampling includes the recently sequenced Thecamonas trahens, a member of the phylogenetically elusive Apusozoa. This data set confirms the relationships of several eukaryotic supergroups seen before and places the eukaryotic root between the monophyletic "unikonts" and "bikonts." We further show that T. trahens branches sister to Opisthokonta with significant statistical support and question the bikont/excavate affiliation of Malawimonas species. The mitochondrial data set developed here (to be expanded in the future) constitutes a unique alternative means in resolving deep eukaryotic relationships.
Similar articles
-
Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes.Mol Biol Evol. 2006 Dec;23(12):2455-66. doi: 10.1093/molbev/msl120. Epub 2006 Sep 18. Mol Biol Evol. 2006. PMID: 16982820
-
Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics.Mol Phylogenet Evol. 2013 Dec;69(3):462-8. doi: 10.1016/j.ympev.2013.08.005. Epub 2013 Aug 22. Mol Phylogenet Evol. 2013. PMID: 23973893
-
Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata.Mol Phylogenet Evol. 2007 Jul;44(1):255-66. doi: 10.1016/j.ympev.2006.11.001. Epub 2006 Nov 15. Mol Phylogenet Evol. 2007. PMID: 17174576
-
The diversity of eukaryotes and the root of the eukaryotic tree.Adv Exp Med Biol. 2007;607:20-37. doi: 10.1007/978-0-387-74021-8_2. Adv Exp Med Biol. 2007. PMID: 17977456 Review.
-
Origin and diversification of eukaryotes.Annu Rev Microbiol. 2012;66:411-27. doi: 10.1146/annurev-micro-090110-102808. Epub 2012 Jul 9. Annu Rev Microbiol. 2012. PMID: 22803798 Review.
Cited by
-
Six-State Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses.Syst Biol. 2021 Oct 13;70(6):1200-1212. doi: 10.1093/sysbio/syab027. Syst Biol. 2021. PMID: 33837789 Free PMC article.
-
A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species.Sci Rep. 2016 Aug 19;6:31645. doi: 10.1038/srep31645. Sci Rep. 2016. PMID: 27538881 Free PMC article.
-
Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads.Proc Biol Sci. 2013 Aug 28;280(1769):20131755. doi: 10.1098/rspb.2013.1755. Print 2013 Oct 22. Proc Biol Sci. 2013. PMID: 23986111 Free PMC article.
-
Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes.Mol Biol Evol. 2014 Apr;31(4):832-45. doi: 10.1093/molbev/mst272. Epub 2014 Jan 7. Mol Biol Evol. 2014. PMID: 24398320 Free PMC article.
-
MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes.BMC Evol Biol. 2014 Nov 25;14:237. doi: 10.1186/s12862-014-0237-5. BMC Evol Biol. 2014. PMID: 25421434 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources