Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study
- PMID: 22135276
- PMCID: PMC3678402
- DOI: 10.1136/jmedgenet-2011-100468
Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study
Abstract
Background: Usher syndrome (USH) is an autosomal recessive disorder comprising retinitis pigmentosa, hearing loss and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous with three distinctive clinical types (I-III) and nine Usher genes identified. This study is a comprehensive clinical and genetic analysis of 172 Usher patients and evaluates the contribution of digenic inheritance.
Methods: The genes MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, GPR98, WHRN, CLRN1 and the candidate gene SLC4A7 were sequenced in 172 UK Usher patients, regardless of clinical type.
Results: No subject had definite mutations (nonsense, frameshift or consensus splice site mutations) in two different USH genes. Novel missense variants were classified UV1-4 (unclassified variant): UV4 is 'probably pathogenic', based on control frequency <0.23%, identification in trans to a pathogenic/probably pathogenic mutation and segregation with USH in only one family; and UV3 ('likely pathogenic') as above, but no information on phase. Overall 79% of identified pathogenic/UV4/UV3 variants were truncating and 21% were missense changes. MYO7A accounted for 53.2%, and USH1C for 14.9% of USH1 families (USH1C:c.496+1G>A being the most common USH1 mutation in the cohort). USH2A was responsible for 79.3% of USH2 families and GPR98 for only 6.6%. No mutations were found in USH1G, WHRN or SLC4A7.
Conclusions: One or two pathogenic/likely pathogenic variants were identified in 86% of cases. No convincing cases of digenic inheritance were found. It is concluded that digenic inheritance does not make a significant contribution to Usher syndrome; the observation of multiple variants in different genes is likely to reflect polymorphic variation, rather than digenic effects.
Conflict of interest statement
References
-
- Saihan Z, Webster AR, Luxon L, Bitner-Glindzicz M. Update on Usher syndrome. Curr Opin Neurol 2009;22:19–27 - PubMed
-
- Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995;374:60–1 - PubMed
-
- Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shepherd RM, Barnes PD, O'Brien RE, Farndon PA, Sowden J, Liu XZ, Scanlan MJ, Malcolm S, Dunne MJ, ynsley-Green A, Glaser B. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 2000;26:56–60 - PubMed
-
- Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I, Keats BJ, Slim R, Petit C. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 2000;26:51–5 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases