Conflicting physiological and genomic cardiopulmonary effects of recruitment maneuvers in murine acute lung injury
- PMID: 22135358
- PMCID: PMC3359949
- DOI: 10.1165/rcmb.2011-0306OC
Conflicting physiological and genomic cardiopulmonary effects of recruitment maneuvers in murine acute lung injury
Abstract
Low tidal volume ventilation, although promoting atelectasis, is a protective strategy against ventilator-induced lung injury. Deep inflation (DI) recruitment maneuvers restore lung volumes, but potentially compromise lung parenchymal and vascular function via repetitive overdistention. Our objective was to examine cardiopulmonary physiological and transcriptional consequences of recruitment maneuvers. C57/BL6 mice challenged with either PBS or LPS via aspiration were placed on mechanical ventilation (5 h) using low tidal volume inflation (TI; 8 μl/g) alone or in combination with intermittent DIs (0.75 ml twice/min). Lung mechanics during TI ventilation significantly deteriorated, as assessed by forced oscillation technique and pressure-volume curves. DI mitigated the TI-induced alterations in lung mechanics, but induced a significant rise in right ventricle systolic pressures and pulmonary vascular resistances, especially in LPS-challenged animals. In addition, DI exacerbated the LPS-induced genome-wide lung inflammatory transcriptome, with prominent dysregulation of a gene cluster involving vascular processes, as well as increases in cytokine concentrations in bronchoalveolar lavage fluid and plasma. Gene ontology analyses of right ventricular tissue expression profiles also identified inflammatory signatures, as well as apoptosis and membrane organization ontologies, as potential elements in the response to acute pressure overload. Our results, although confirming the improvement in lung mechanics offered by DI, highlight a detrimental impact in sustaining inflammatory response and exacerbating lung vascular dysfunction, events contributing to increases in right ventricle afterload. These novel insights should be integrated into the clinical assessment of the risk/benefit of recruitment maneuver strategies.
Figures
References
-
- Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338:347–354 - PubMed
-
- Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000;342:1301–1308 - PubMed
-
- Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, Raymondos K, Nin N, Hurtado J, Tomicic V, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med 2008;177:170–177 - PubMed
-
- Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L. Influence of tidal volume on alveolar recruitment: respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 2001;163:1609–1613 - PubMed
-
- Carpenter TC, Stenmark KR. Hypoxia decreases lung neprilysin expression and increases pulmonary vascular leak. Am J Physiol Lung Cell Mol Physiol 2001;281:L941–L948 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
