Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 12;116(1):424-33.
doi: 10.1021/jp205770p. Epub 2011 Dec 19.

Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations

Affiliations

Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations

Bo Huang et al. J Phys Chem B. .

Abstract

Protein A from the bacterium Staphylococcus aureus (SpA) has been widely used as an affinity ligand for purification of immunoglobulin G (IgG). The affinity between SpA and IgG is affected differently by salt and pH, but their molecular mechanisms still remain unclear. In this work, molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analysis were performed to investigate the salt (NaCl) and pH effects on the affinity between SpA and human IgG1 (hIgG1). It is found that salt and pH affect the interactions of the hot spots of SpA by different mechanisms. In the salt solution, the compensations between helices I and II of SpA as well as between the nonpolar and electrostatic energies make the binding free energy independent of salt concentration. At pH 3.0, the unfavorable electrostatic interactions increase greatly and become the driving force for dissociation of the SpA-hIgG1 complex. They mainly come from the strong electrostatic repulsions between positively charged residues (H137, R146, and K154) of SpA and the positively charged residues of hIgG1. It is considered to be the molecular basis for hIgG1 elution from SpA-based affinity adsorbents at pH 3.0. The dissociation mechanism is then used to refine the binding model of SpA to hIgG1. The model is expected to help design high-affinity peptide ligands of IgG.

PubMed Disclaimer

Publication types

LinkOut - more resources