Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;90(2):e125-31.
doi: 10.1111/j.1755-3768.2011.02261.x. Epub 2011 Dec 2.

Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts

Affiliations
Free article

Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts

Efdal Yoeruek et al. Acta Ophthalmol. 2012 Mar.
Free article

Abstract

Purpose: To evaluate the potential use of decellularized porcine corneas (DPCs) as a carrier matrix for cultivating human corneal cells in tissue engineering.

Methods: Corneal cells were isolated from human corneoscleral rims. Porcine corneas were decellularized using hypotonic tris buffer, ethylene diamine tetra-acetic acid (EDTA, 0.1%), aprotinin (10 KIU/ml) and 0.3% sodium dodecyl sulphate. Haematoxylin-eosin (HE) and 4,6-diamidino-2-phenylindole (DAPI) staining were performed to confirm removal of the corneal cells. Quantitative analysis was performed to determine levels of desoxyribonucleic acid (DNA) using DNA Purification Kit (Fermentas, St. Leon-Rot, Germany). Alcian blue staining was carried out to analyse the structure of the extracellular matrix (ECM). Corneal stromal cells were injected into the DPCs; limbal corneal epithelial cells and corneal endothelial cells were seeded onto the anterior and posterior surfaces of the DPCs, respectively. Evaluation was undertaken at days 14 and 30. The phenotypical properties of the cultivated corneal cells were investigated using Immunolocalization of type I collagen, keratocan, lumican, cytokeratin 3 (AE5) and type VIII collagen.

Results: Haematoxylin-eosin and DAPI staining showed efficient elimination of porcine corneal cells, whereas alcian blue confirmed gross preservation of the ECM. The quantitative analysis of the DNA content showed a significant reduction (mean before decellularization: 75.45 ± 13.71 ng/mg; mean after decellularization: 9.87 ± 2.04 ng/mg, p < 0.001). All three types of corneal cells were efficiently cultured and expanded on the DPCs.

Conclusions: Decellularized porcine corneas might serve as a potential scaffold for tissue engineering of the cornea, possibly providing xenogenic substrate for corneal transplantation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources